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Abstract 
 Distributed Component Object Model (DCOM) is one 
of the emerging standards for distributed objects. Before 
DCOM can be used to build mission-critical applications, 
the reliability and availability issues must be addressed. In 
this position paper, we outline the current research 
directions of the InterCOM project, which exploits the 
dynamic behavior, the extensible architecture, and the 
component software model of DCOM to provide fault-
tolerance capabilities to distributed applications. 

 
1. Introduction 
In the component software architecture, applications are 
built from packaged binary components with well-defined 
interfaces [1]. It allows flexible update of existing 
applications, provides a higher-degree of application 
customization, encourages large-scale software reuse, and 
provides a natural migration path to distributed 
applications. The Component Object Model (COM) [2] is 
an approach to achieving component software architecture. 
COM specifies a way for creating components and for 
building applications from components. Specifically, it 
provides a binary standard that components and their clients 
must follow to ensure dynamic interoperability. This 
enables on-line software update and cross-language 
software reuse. 
 
Distributed Component Object Model (DCOM) [3] is the 
distributed extension of COM. It is an application-level 
protocol for object-oriented remote procedure call (ORPC). 
The DCOM protocol is layered on top of the OSF DCE 
RPC specification [4], with a few extensions. For example, 
it specifies how pointers to remote objects are represented 
and how they can be resolved to find the actual objects. 
Effectively, DCOM transparently extends the capabilities 
and benefits of COM to a networked environment. 
 
DCOM is now part of the Windows NT 4.0 operating 
system. Due to the increasing popularity of Windows NT, 
several companies are porting or plan to port DCOM to 
mainframes (such as IBM MVS) and various versions of 

Unix (such as Solaris, Digital Unix, and HP-UX) to ensure 
interoperability in a heterogeneous environment [5]. 
DCOM is also part of the ActiveX Core Technologies [6] 
that are being standardized by a software consortium called 
the Active Group. It can also be expected that DCOM will 
be increasingly used in the research community as a 
distributed object platform for systems research. 
 
However, DCOM environment itself has several problems 
that need to be solved before it can be accepted by the 
research community as a viable research platform. Also, as 
demonstrated throughout the paper, the dynamic behavior 
of DCOM introduces new challenges as well as encourages 
novel solutions for building reliable distributed 
applications. These aspects motivated our InterCOM 
project. Due to its desktop document processing origin, 
many DCOM application programming interfaces (APIs) 
are not structured and presented in an intuitive way for 
building distributed client/server applications. As a result, 
although the design of the DCOM architecture is quite 
extensible (that is, reasonable defaults are provided for 
common cases, but can be overwritten through flexible 
programming hooks), it often involves non-intuitive 
programming hacks to provide the functionality required in 
a client/server environment. Some of these are reflected in 
the discussions in Section 3. The InterCOM project aims at 
extracting the mechanisms behind the APIs, and providing 
a toolkit to restructure them in a way that facilitates 
building higher-level object services [26] and implementing 
reliable, highly-available, and fault-tolerant distributed 
applications. 
 
 
2. Overview of DCOM  
 
In COM, an executable (EXE) or a dynamic link library 
(DLL) can serve as an object server. A server can 
implement class factories for multiple classes, each of 
which is identified by a 128-bit globally unique identifier 
(GUID), called the class identifier (CLSID). Each class 
factory can create object instances of a particular CLSID. 
An object can support multiple interfaces, each representing 
a different view or behavior of the object. Each interface is 



identified by a GUID, called the interface identifier (IID). 
An interface usually consists of a set of functionally related 
methods. A COM client interacts with a COM object by 
acquiring a pointer to one of the object's interfaces, and 
invoking methods through that pointer. 
 
The overall architecture of DCOM can be divided into three 
layers [7]: basic programming layer, remoting layer, and the 
wire protocol layer. At the basic programming layer, the 
client is provided with the illusion that it is always invoking 
methods on objects running in the same address space. The 
remoting layer [2] consists of the COM infrastructure that 
provides that illusion. The wire protocol [3] describes what 
are actually transmitted across the network when objects do 
not reside on the client machine. 
 
At the basic programming layer, the client specifies a 
CLSID and an IID to obtain an interface pointer. The 
server, upon being activated by the COM infrastructure, 
creates and registers all supported class factories. A method 
on the class factory of the requested CLSID is invoked to 
create an object instance and return a pointer to the 
interface of the requested IID. The client can then invoke 
methods of that interface, or navigate to other interfaces of 
the same object instance. 
 
Upon receiving an activation request from the client, the 
Service Control Manager (SCM) at the remoting layer 
checks to see if the client can attach to a running class 
factory. If not, it locates the server implementation through 
the registry, and activates the server. In the process of 
returning an interface pointer to the client, a server-side 
stub and a client-side proxy are created, connected by an 
RPC channel [2]. When the client invokes a method, the 
proxy marshals the parameters, and sends the request to the 
stub. The stub unmarshals the parameters, invokes the 
actual method on the object, marshals the return values, and 
replies back to the proxy which unmarshals the values and 
hands them back to the client. 
 
At the wire protocol layer, the client-side SCM performs 
remote activation by invoking an RPC interface method on 
the server-side SCM [23]. The wire-level representation of 
a returned interface pointer includes a server identifier, the 
address of the resolver that can translate the identifier to the 
actual server endpoint, and an interface pointer identifier 
that uniquely identifies the interface instance within that 
server. Upon unmarshaling the interface pointer, the client-
side RPC subsystem requests the resolution of the server 
identifier, and caches the returned endpoint information for 
future method invocations. The parameters and return 
values of method invocations are marshaled in the Network 
Data Representation (NDR) format [4]. 
 
 
 

3.  The InterCOM Project  
 
Our long-term goal is to provide a fault-tolerance-
programming wizard that is able to guide programmers to 
choose the right fault-tolerance techniques and generate 
much of the boilerplate code. The wizard would cover at 
least the three main approaches to fault tolerance: 
checkpointing and message logging [10,11], virtual 
synchrony [15], and transaction [27]. In this section, we 
outline the current research directions of the InterCOM 
project, which exploits interception-based mechanisms to 
provide reliability and high availability to DCOM 
applications. It addresses the issue of checkpointing and 
call logging in a primary-backup, failover configuration. 
Extensions to the active-active configuration with replicated 
processes based on group communications will be part of a 
joint project with the Ensemble group at Cornell [8]. We 
plan to use Microsoft Transaction Server [23] for the 
transaction part. 
 
We consider primary-backup systems which may or may 
not have an underlying clustering software (such as 
Wolfpack [9]) for providing the failover of system 
resources such as IP addresses, shared disk, etc. Complete 
application failover in such systems generally involves the 
primary server checkpointing its critical data for use by the 
backup; the client locating the backup server upon a failure, 
and issuing a reconnection; the server executing a different 
piece of code if software bugs seem to be the cause of the 
failure. We next describe the challenges and opportunities 
that DCOM presents in these aspects. 
 
3.1.  Data Checkpointing  
 
A stateful server application usually needs to checkpoint its 
critical data during normal execution so that, upon a failure, 
the backup server can recover as much pre-failure state as 
possible from the checkpoint. In a cold backup scheme, the 
checkpoint is periodically saved on a shared disk, and the 
backup is activated to reload that checkpoint only upon a 
failover. In a warm backup scheme, the checkpoint is 
transferred to the memory of an initialized backup. In both 
cases, message logging can be employed as a form of 
incremental checkpointing to improve performance. 
 
COM-based server applications introduce several 
interesting new twists to the problem of checkpointing. In a 
traditional monolithic application, the main program is 
totally in charge of declaring and checkpointing all critical 
data [10]. This may not be an easy task when unknown 
critical data inside imported libraries are present. This 
difficulty becomes the normal case in component-based 
applications in which reused components may constitute a 
large percentage of the total amount of code. Therefore, 
COM defines a set of standard interfaces (the IPersist* 
family) that components can expose to provide data 



persistence. This allows the knowledge about the critical 
data of each component to be encapsulated inside the 
component itself. The application simply queries each 
constituent component for one of the standard interfaces, 
and asks the component to checkpoint itself. To allow 
critical data from all constituent components to be saved in 
the same file, COM supports the concept of "a file system 
within a file", called structured storage [12]. It also 
supports a transacted mode that can be used to ensure either 
the checkpoint operations of all components succeed, or 
none of them takes effect. Another challenge in 
checkpointing DCOM applications is that COM objects 
come and go due to the inherently dynamic nature of the 
model. As a result, the issue of tracking and identifying 
those objects that are still active also needs to be addressed. 
 
3.2. Object Locator 
 
Object locator is used by COM clients to find the desired 
primary server objects, as well as to locate the backup 
server objects upon a failure. COM provides several 
locator-related services. One of the goals of InterCOM is to 
integrate these services into a single naming service for 
locating COM objects, and possibly integrate it with other 
general-purpose, standard naming services.     
 
The most well-known object locator in COM is the registry. 
It maps a CLSID (or a readable name called ProgID) to the 
path name of the server executable that supports the 
CLSID. However, the registry is consulted only after the 
SCM has failed to locate any running object instance. There 
are at least two ways for a client to bind to a running 
instance. First, if a running class factory for the requested 
CLSID has been registered in the class object table, SCM 
retrieves the class factory pointer directly from the table 
without activating a new server instance. Alternatively, a 
specific object instance can be named by using a moniker. 
A moniker [12,24] is itself a COM object supporting the 
IMoniker interface. Each moniker specifies a CLSID and 
identifies the persistent data for an instance of that CLSID. 
By registering a moniker with the Running Object Table 
(ROT) [2], an object instance allows clients requesting that 
moniker to attach to it.    
 
A higher-level object locator service can be implemented 
using the referral (or broker) components [13]. A referral 
component manages a pool of interface pointers to object 
instances possibly running on different machines. It can 
support a naming scheme as well as perform failure 
detection and load balancing.  In such architecture, a client 
always contacts the referral component to get access to an 
initial interface pointer to a server object. The underlying 
distributed object support of DCOM allows the client to 
talk to the object directly in subsequent invocations, 
without passing through the referral component. (This 
architecture bears some similarities to the single-IP-image 

approach to supporting Web server clusters [14].)  
 
3.3.  Client Reconnection   
 
There are two approaches to enabling automatic client 
reconnections upon a server failure: toolkits and wrappers 
[15]. In the first approach, client programs link with a 
toolkit and invoke special APIs to make connection [10]. In 
the second approach, source code-transparent wrappers 
intercept normal connection requests sent by the clients, 
and issue reconnections when a failure occurs. As explained 
next, the dynamic behavior and extensible architecture of 
DCOM facilitate the implementation of dynamic wrappers 
that allow the server objects to decide when to apply which 
wrappers based on run-time information.   
 
As described previously, when a client requests an interface 
pointer, which server object it will eventually bind to 
depends on several table-lookup operations. It is therefore 
possible to manipulate the mapping information in those 
tables at run-time to dynamically change the application 
behavior. For example, one can provide a wrapper 
component by using COM's containment or aggregation 
technology [1]. The former allows the wrapper to receive a 
client request, perform pre-processing, invoke the actual 
server component, perform post-processing and then hand 
the results back to the client. The latter allows changing 
application behavior by adding additional interfaces that the 
client or the COM infrastructure may query. Wrappers can 
be injected into the system by either modifying the registry 
settings, or placing mappings in the class object table or 
ROT to bypass registry lookups.   
 
Server objects themselves can also decide which wrapper to 
inject by using a technique called custom marshaling 
[16,17]. The marshaling architecture described in the 
previous section is called the standard marshaling: data 
passing between the server and the client are marshaled into 
a standard format in a standard way. Standard marshaling is 
actually a special case of the more general custom 
marshaling. By supporting the IMarshal interface, a server 
object indicates that it wants to establish proprietary 
communication with the client-side proxy, and so the COM 
infrastructure should not create the standard proxy/stub 
pair. That interface allows an object to specify the CLSID 
of the custom proxy that should run on the client side and 
can interpret the custom marshaling packet. Custom 
marshaling is commonly used for caching immutable 
objects on the client side to efficiently support read 
operations locally. It can also be useful for injecting 
dynamic client-side fault-tolerance agents for issuing 
reconnections. Custom marshaling is one of many examples 
that demonstrate the extensibility of the DCOM 
architecture. 
 
When a wrapper issues a reconnection, it needs a locator for 



finding the correct backup server object. If the original 
binding to the primary server object was based on a 
moniker, a similar binding call can be made to the backup 
machine for reconnection. If the original connection was 
made to a fresh instance of a particular CLSID, then a 
separate mechanism must be provided to allow the server 
object and the client to agree on a name upon object 
creation. 
 
3.4.  Software-fault Tolerance   
 
In general, there are three approaches to tolerating software 
bugs. The simplest one is the environment diversity 
approach [18,19], which reexecutes the same program with 
the same set of input but in a different environment.  
Usually, this can be achieved by following the same 
failover procedure for recovering from hardware failures. 
Another one is the data diversity approach [20], which 
executes the same program on a transformed but consistent 
set of data. This can be implemented by the containment 
wrappers described previously, where pre-processing and 
post-processing consist of application-specific data 
transformations.   
 
The third approach is the design diversity approach [21,22], 
which executes a different program implementing the same 
functionality. Design diversity has not been widely used 
possibly because building multiple versions can be costly 
and they may still share similar kinds of bugs. The design 
of COM provides several arguments that design diversity 
may eventually be practically useful in the component 
software architecture. First, interface specifications are 
what COM is all about. By strictly separating interfaces 
from implementations, COM encourages different 
implementations of the same interfaces. In other words, the 
existence of multiple versions supporting the same 
functionality should actually be the normal case in COM. 
Moreover, by asking each component to register which 
component categories (i.e., which sets of interfaces) it 
supports, it is possible to standardize the procedure of 
invoking an alternate upon a failure, and provide a toolkit to 
hide all the registry query and update activities. The rules 
that COM clients must specify a globally unique identifier 
when requesting an interface, and that an interface is 
immutable once it is assigned an identifier, ensure that an 
alternate must unambiguously support the interfaces that a 
client wants. Finally, COM's language neutrality allows the 
same interfaces to be implemented in different 
programming languages. This has the potential of greatly 
improving the effectiveness of design diversity. For 
example, a memory corruption error in a component 
implemented in a language that supports pointers would not 
appear in another component written in a language with no 
pointers. 
 
 

4.  Summary   
 
We have described the challenges and opportunities that 
DCOM presents in terms of building reliable and highly 
available distributed applications. The current research 
directions of the InterCOM project were briefly described 
in the context of primary-backup, failover recovery. The 
techniques can also serve as the basis for extending 
InterCOM to the active-active, replicated processes setting 
as supported in Ensemble. Such extensions may include 
integrating the notion of object replication into the object 
naming mechanism; providing a custom IDL compiler for 
generating client proxies that access object groups in an 
optimal fashion; and providing object replication 
management that supports dynamic instantiation of objects 
based on a QoS description [25].  
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