
GATutor: A guided discovery based tutor for 
designing greedy algorithm 

 

Kavya A K Alse 
IDP - ET 

IIT Bombay, India 
kavyaalse@gmail.com 

Mukund Lahoti 
Strand Life Sciences Pvt 

Ltd., Bangalore, India 
mukundlahoti89@gmail.com 

 

Meenakshi Verma 
Google India Pvt Ltd.,  

Bangalore, India 
meenakshiparadise@gmail.com 

 

Sridhar Iyer 
Dept. of CSE 

IIT Bombay, India 
sri@iitb.ac.in 

 
Abstract— Greedy algorithms is an important class of 

algorithms. Teaching greedy algorithms is a complex task. 
Ensuring that students can design greedy algorithms for new 
problems is also complex. We have built a guided discovery based 
greedy algorithm tutor (GATutor), to teach the process of 
designing greedy algorithms. GATutor guides the student to 
discover the greedy algorithm for a few well-known problems, by 
asking two important questions – i) what is the satisfying 
condition at each step? and ii) what is the selection criterion for 
the next item? As a result, the students not only learn the 
algorithms for the given problems, but also the process of 
designing greedy algorithms for new problems. We conducted a 
study to compare the greedy algorithm design abilities of the 
students who were trained with GATutor versus those who 
worked with traditional algorithm visualizations. The results 
indicate that students who worked with GATutor performed 
better in designing a greedy algorithm for a new problem. The 
students also said that their confidence in greedy algorithm 
design increased because of GATutor.  

Keywords— Greedy Algorithms, Guided Discovery, Teaching 
Algorithms, Automated Tutoring 

I. INTRODUCTION 
Knowledge of algorithms is critical to anyone writing 

computer programs. Greedy algorithms are an important class 
of algorithms [11]. They are useful for solving optimization 
problems like job scheduling and Huffman code generation 
[11]. Teaching greedy algorithms is a complex task [22]. 
Ensuring that students can design greedy algorithms for new 
problems is important [22]. 

While there are tools for teaching-learning of algorithms 
[17] and greedy algorithms in particular [20], they focus mostly 
on specific algorithms and their implementation. However, 
students find it difficult to transfer learning from one context to 
another [6]. Explicit emphasis on the underlying process is 
necessary for students to be able to apply the knowledge from 
one context to another [21]. Hence, in addition to teaching 
specific greedy algorithms, there is a need for explicit emphasis 
on the process of designing greedy algorithms, in such a way 
that students can apply this process to new problems. 

We have designed and developed GATutor, a guided 
discovery based software tutor for teaching the design of 
greedy algorithms. GATutor guides the student to discover the 
greedy algorithms like Prim’s, and Dijkstra’s. [11].The design 
of GATutor involves real-life problem context, scaffolding, 

and immediate feedback, as recommended by the guided 
discovery approach [9].  

Instead of simply showing the working of the algorithms, 
GATutor guides the student by asking two important questions 
– i) what is the satisfying condition at each step? and ii) What 
is the selection criterion for the next item? For example, in the 
context of Prim’s algorithm, the satisfying condition is ‘adding 
an edge should not form a cycle’ and the selection criterion is 
‘select an edge which has least weight and connected to any 
already selected vertex’. GATutor guides the student to 
discover these selection criteria and satisfying condition on 
their own by asking carefully designed questions and providing 
visual feedback for their responses. As a result, the students not 
only learn the algorithms for the given problems, but also the 
process of designing greedy algorithms for new problems. 

We conducted a 2-group quasi-experimental study to 
evaluate the effectiveness of GATutor. The control group 
learned through algorithm animations available on the web [7] 
and text-based study materials developed by the authors. The 
experimental group worked with GATutor. 

The broad research goal was to see how a guided discovery 
based interactive tutor affects the learning of designing greedy 
algorithms. Specifically, we are interested in the following 
research questions: 

1. How well are students able to design their own greedy 
algorithm to solve a new problem after working with GATutor, 
as compared to the students who worked with traditional 
visualizations? 

2. What is the perception of students on using GATutor for 
learning to design greedy algorithm for a new problem? 

We found that the students who worked with GATutor 
scored high on tasks requiring them to design greedy 
algorithms for a new problem. They were successful in coming 
up with greedy techniques, writing an algorithm and applying 
that in solving a problem. Students who worked with GATutor 
also said that it helped them to solve similar new problems. 

In section 2 we analyze what work has been done towards 
teaching-learning of algorithms. In section 3 we explain in 
detail the working and features of our intervention, GATutor. 
In section 4 we present the research study in detail, the results 
of the experiments in section 5, and discussion in section 6. 

2015 IEEE Seventh International Conference on Technology for Education

978-1-4673-9509-0/15 $31.00 © 2015 IEEE

DOI 10.1109/T4E.2015.26

61



II. RELATED WORK 

A. Teaching Algorithms 
Analysis and design of Algorithms is a crucial subject in 

computer science. Many researchers have agreed that teaching 
algorithms to students is not straight-forward because each 
algorithm involves diverse aspects with different difficulties 
[5].  Traditionally, algorithms, esp. greedy algorithms are 
taught in the following way: present the problem; present the 
well-known algorithms for that problem; analyze the 
complexity of the algorithm and then convert the algorithm 
into code in a programming language [18]. Some researchers 
have stressed the need to teach algorithm design explicitly to 
students [4, 22]. They have reported that students struggle in 
understanding the problem and converting it to an algorithm. 

Some solutions developed to address this problem include 
use of visuals in teaching algorithms [17, 13, 16]. There are 
many animations and simulations developed to teach 
algorithms step-by-step, with examples [17]. Some of them try 
to help students in translating an algorithm to a source code in 
a specific language [22]. Another approach to help students in 
learning algorithms was by providing them real life examples 
and solving them using an algorithm. These are specifically 
targeted to teach design of algorithms [10]. Along with real-life 
examples, the authors have argued that use of feedback in their 
tool has increased students’ motivation. 

When we consider only greedy algorithms, the traditional 
method of teaching is not sufficient because it directly gives 
the optimum selection criterion. It hides from the students, the 
process of designing a greedy algorithm by coming up with 
selection criteria themselves. Also textbooks seldom emphasize 
the design process which leads to the selection of optimum 
selection criteria [19]. GreedEx [20] is a system which teaches 
greedy algorithms by considering sub-optimal and optimal 
selection criteria. Even here, the focus is on teaching one 
algorithm and translating it to code. To the best of our 
knowledge, there is no study that tests students’ ability to 
design greedy algorithms for a new problem. 

While greedy algorithms are not universally applicable, i.e., 
there are classes of problems for which they don't lead to 
optimal solutions, they are nonetheless important. We note that 
students are often familiar with the use of greedy technique in 
daily life situations. They are used to identify some greedy-like 
criteria which are usually not optimal. Hence it is necessary to 
address these sub-optimal criteria and teach them the process of 
coming up with optimal criteria. One way of doing this is 
through algorithmic thinking. 

B. Algorithmic Thinking 
Algorithmic thinking is a way of defining clear 

unambiguous steps to reach the solution of a problem [2]. 
Futschek [12] has given 6 steps involved in algorithmic 
thinking:  
1.  The ability to analyze given problems 
2. The ability to specify a problem precisely 
3. The ability to find the basic actions that are adequate to the 

given problem 

4. The ability to construct a correct algorithm to a given 
problem using the basic actions 

5. The ability to think about all possible special and normal 
cases of a problem 

6. The ability to improve the efficiency of an algorithm 
We have used first three of these steps in the context of greedy 
algorithms to design and develop GATutor. Since we want the 
students to come up with their own algorithm, we have used 
the guided discovery learning to design GATutor. Guided 
discovery learning is shown to be effective for these 
exploratory tasks [9]. 

C. Guided Discovery 
The students make most out of the instruction if there is an 

explicit demonstration of the decisions taken and actions 
carried out during problem solving [9]. Clark argues that 
guided environnment with scaffolding and real-life problems 
are found to motivate and help the students to connect with 
their earlier experiences. 

Alfieri [1] after a meta-analysis of 360 studies with 
discovery learning, suggest guidance in the form of 
scaffolding, feedback, elicited explanations and worked 
examples. These characteristics of guided discovery were 
considered while designing the GATutor. 

III. IMPLEMENTATION OF GATUTOR 
We have developed a guided discovery based tutor called 

GATutor, for designing greedy algorithms. It uses Job 
scheduling, Knapsack, Minimum Spanning Tree and Single 
Source Shortest distance problems as illustrative examples for 
designing greedy algorithms. Prims’s and Kruskal’s algorithm 
are used in Minimum Spanning Tree problem and Dijkstra’s 
algorithm for single source shortest path. 

The user can access GATutor through a browser, so it can 
be deployed and used in any operating system. The GATutor 
homepage is shown in Fig. 1. 

 
Fig. 1: Welcome Screen in GATutor 

A. Objectives of GATutor 
GATutor aims to explicitly teach the design of greedy 

algorithms and not just the implementation of specific 
algorithms. GATutor has the following learning objectives and 
the corresponding level in revised Bloom’s taxonomy [3].The 
Students will be able to: 

62



1. Explain what are greedy algorithms (Understand level)  
2. Explain specific greedy algorithms (Understand level)  
3. Analyze which selection function is optimal (Analyze 

level)  
4. Prove its optimality by showing counter examples for 

non-optimal questions (Evaluate level)  
5. Solve different such problems (Apply level) 

B. Design of GATutor 
GATutor has the following features based on the 

recommendations by guided discovery literature: 

Real-life problem: Real life problems are known to 
motivate the students and engage them in learning. It is also 
helpful in getting the students to appreciate the problem and 
preparing them for the learning [15]. GATutor introduces a 
real-life problem at the beginning of each algorithm. This also 
serves as an indication of where the corresponding algorithm 
might be applicable. 

 
Fig. 2: Visual and explanatory feedback 

 
Step by step building of algorithms through leading 

questions: GATutor doesn’t provide the ready algorithm to 
students, but it asks well thought questions with options, and 
makes the students to think and come up with the algorithm 
themselves. In other words it follows the guided discovery 
method of teaching. 

Interaction: By making the students to ‘participate’ in the 
algorithm design process, the GATutor ensures that important 
concepts are understood well by the students. This gives less 
chance for passive learning as in listening to a lecture or 
watching a video. Here the students need to actively answer the 
questions posed and build the algorithm according to their 
answers. 

Visual and explanatory feedback: For the options that the 
students select for each question, irrespective of right or wrong, 
a visual and explanatory feedback is given. The feedbacks 
specify more than right/wrong. It gives them hints to solve the 
problem. For example, as shown in Fig. 2, the dialogue box 
says: 

‘Check that you have chosen 
1. An edge with least weight and  
2. It is connected to an already selected vertex.’  

C. Working of GATutor 
In general, a greedy algorithmic technique considers one 

candidate at a time locally, without any backtracking [11]. This 
selection is done by two functions: satisfying condition and 
selection criteria: 

Finding Satisfying Condition: A satisfying condition in a 
greedy algorithm specifies the necessary condition for selecting 
the next candidate. If the satisfying condition is violated, then 
the resulting answer will be incorrect. The satisfying condition 
in Prim’s is: ‘Adding an edge should not form a cycle’. 

Finding Optimal Selection Criteria: A selection criterion in 

 
Fig. 3: Functional flow of GATutor 

63



a greedy algorithm specifies the sufficient condition for the 
selecting the next candidate. If the optimal selection criterion is 
not used, then it will lead to a sub-optimal solution. The 
selection criterion in Prim’s algorithm is: ‘Select an edge which 
has least weight and connected to any already selected vertex’. 

We have used these characteristics of greedy algorithms as 
a key feature to drive the learning in GATutor. A functional 
flow diagram of GATutor is given in Fig. 3. We illustrate the 
working of GATutor through a running example of Prim’s 
algorithm. 

GATutor starts with a real life problem and asks the student 
to solve the problem without any guidance. In Prim’s 
algorithm, it gives the following real-life problem: 

Government of your state wants to provide electricity to all 
the villages near to your city. Due to the terrain of the region 
the cost of laying electricity cable between two villages may 
not necessarily depend upon the distance between them. Given 
the cost data and the map of the region, Will you be able to 
design a topology which levies minimum cost to the state? 

 Then GATutor explains the problem with the required 
background knowledge. To teach satisfying condition, 
GATutor poses a question to the student and gives options of 
the possible satisfying conditions. These options are carefully 
constructed by considering students’ difficulties and pre-
conceptions. The question asked in Prim’s algorithm is: 

Can you say which among the following rules should always be 
followed at every step of forming a minimum spanning tree? 

1. Stop adding edges when the number of edges is n-1, where n 
is the number of vertices. 

2. Adding an edge should not form a cycle 
3. I do not know. 

When student makes a selection, a visual and explanatory 
response is given according to the selection. For example, if the 
selection is option 1, then in the visualization, n-1 edges are 
selected randomly and explanation is given for why the 
resulting graph is not a minimum spanning tree. We want the 
students to discover the optimal selection criteria by 
themselves. To make this design process explicit, we list some 
selection functions initially and ask the learner to discover the 
optimal one. The options given in the Prim’s algorithm are: 

Given that you have chosen the first vertex randomly from 
which you will start adding edges, What can be the optimum 
selection criteria among the following candidate functions, to 
select the next edge? 

1. Select an edge which has least weight and connected to a 
vertex you just chose 
2. Select an edge such that the distance from first vertex to the 
new vertex is minimum 
3. Select an edge which has least weight and connected to any 
already selected vertex 
 

Visual and explanatory feedback is given to the options 
selected in each of these questions. The students are given 
feedbacks depending on their choices and if their strategy is 
sub-optimal, then it explains why it is so and leads them to the 
optimal strategy. If their approach is already optimal then it 

explains the strategy for solving other such problems. For 
example, if the option selected for selection criteria of Prim’s 
algorithm is ‘Select an edge such that the distance from first 
vertex to the new vertex is minimum’, then the students get to 
see the response as shown in Fig. 2. Then it guides the students 
to solve a problem by applying the satisfying condition and 
selection criterion that they have discovered. 

Then it takes the students to the real-life problem 
introduced at the beginning and asks them to solve again, 
without any scaffolds. 

D. Implementation 
GATutor is built using Java server pages in the backend 

and HTML, JavaScript and SVG images in the front-end. 
 
(i) Backend: Java servlet pages embedded with java script 

We have made 87 Java servlet pages (jsp) consisting of 
java script code implementing variations of different 
algorithms to help student find out correct algorithm by 
themselves. We have used JSP pages for displaying the non-
changing content of the system. For coding a particular 
algorithm, we have used java script. It receives the input by 
the user and accordingly changes the content of the jsp pages, 
then output the corresponding jsp page. 
 
(ii) Frontend: SVG images with clickable interface 

As our system is web based, using SVG images is a good 
option because they are scalable, and every element and every 
attribute in SVG files can be animated. We have used this 
property to make clickable images, which gives a feel like that 
of playing a game. As per our input these images changes their 
values of different elements and objects thus making the 
system more interactive and interesting to the user. 

IV. RESEARCH STUDY 
A quasi-experimental pilot study was done to measure the 

efficiency of students in designing a greedy algorithm for a 
new problem. The study also included measuring students’ 
perceptions about greedy algorithmic technique and GATutor. 
The details of the study are explained below. 

A. Goal of the study 
This pilot study was mainly focused to see if GATutor is 

successful in teaching greedy algorithmic design approach to 
students. The research questions considered are: 

(i) How well are students able to design their own greedy 
algorithm to solve a new problem after working with GATutor, 
as compared to the students who worked with traditional 
visualizations? 

(ii) What is the perception of students on using GATutor for 
learning to design greedy algorithm for a new problem? 

B. Sample 
Analysis and design of Algorithms course is usually taught 

in the second year so that they have a basic understanding of 
programming. Considering this, we selected 19 first year 
engineering students who have completed/almost completed 
their introductory programming course. All the students have 

64



either CS/Mechanical as their majors. The assignment of 
participant to groups was based on their scores in the 
introductory programming subject and a pre-test such that both 
the groups remain equivalent. 

C. Procedure 
In order to test our research questions, we chose two 

greedy algorithms (Minimum spanning tree and Single source 
shortest path) to students and then test their understanding on 
the following learning goals for a new problem (Maximum 
independent set problem). These learning goals are adapted by 
Futschek  [12].  
LO 1: The students will be able to recognize that the problem 
is an optimization problem. They have to precisely specify 
what needs to be minimized/ maximized. 
LO 2: The students will be able to recognize – the satisfying 
condition and optimum criterion. 
LO 3: The students will be able to recognize – the optimum 
selection criterion.  
LO 4: The students will be able to write the steps according to 
satisfying condition involved in greedy approach for solving 
the given problem. 
LO 5: The students will be able to write the steps according to 
optimum selection criterion involved in greedy approach for 
solving the given problem. 

Since the knapsack and job scheduling problems can be 
directly related to daily activities, it is typical for students to 
have some strategy to solve those problems. Many a times such 
strategies turn out to be greedy even if they are not optimal 
[13]. So we decided to choose Minimum spanning tree (Prim’s) 
and shortest distance (Dijkstra's) to teach the greedy 
algorithmic design technique and Maximum independent set 
problem for testing. The assumption here is, since there are less 
direct relationship between real life scenarios and these 
problems, the effect of GATutor and animations will be 
stronger on students. The duration of the study was around 2 
hours. The primary researcher was present at the location of the 
study to assist in terms of logistics. 

After giving instructions to students, they were asked to 
watch 2 videos about the basics of graphs which include the 
concepts of vertex, edge, degree of a vertex, paths, cycles etc. 

The length of the first video was 8 min and the second video, 
which specifically talked about spanning trees, was of 3 min 
duration. The students were allowed to watch them till they 
were confident about the content.  

Then, control group students worked with the animations 
[5] of Prim’s and Dijkstra’s algorithm. Then they were given a 
brief lecture on satisfying condition and selection criteria in 
those algorithms. The experimental group students, on the 
other hand, worked on Prim’s and Dijkstra’s algorithm with 
GATutor. None of the students had any time restriction on 
these activities and on an average they took 1 hour 30 minutes 
before post-tests begun. 

The post-test was conducted in 3 phases to test their greedy 
algorithmic design abilities. Phase 1: One of the questions was 
about the content they had just learnt – to find a minimum 
spanning tree. This question is used to test the understanding of 
the content taught by both the systems. The next problem was 
new to them – finding the maximum independent set using 
greedy technique. This involved not only problem solving, but 
the students were asked to design a greedy algorithm and use 
that algorithm to solve the problem.  

Phase 2: After they have finished writing answers for these 
questions, they were given one additional sheet, where they 
were supposed to explicitly mention the satisfying condition 
and the selection criteria used in solving the problem. The 
students were free to change their answers in Phase 1 after they 
had attempted this phase. Our assumption was that these 
questions might act as probing questions.  

Phase 3: Then the students were interviewed about the 
answers they had written. Even during the interview they were 
allowed to change the answer. This was followed by a survey 
about students’ perceptions of learning and GATutor.  

D. Instrument 
The rubric in table 1 was developed based on algorithmic 

thinking [12] to evaluate the algorithm developed by the 
students. This rubric was used to evaluate students; answer 
scripts in the post-test. 
 

TABLE 1: RUBRICS FOR EVALUATING ALGORITHMS DESIGNED BY STUDENTS 
LO Correct Partially Correct Not Correct 

LO 1 
Mentions that the vertices should be considered in the increasing order of their 

weight. OR 
Mentions that the vertices with higher degree should not be considered. 

Just mentions number of vertices should be 
maximized AND/OR 

Some implicit indications like growing cardinality 
in answer sheet 

Incorrect 
approach 

LO 2 

Mentions the satisfying condition – no two vertices in the set should be directly 
connected. OR 

If the considered vertex is already connected to a vertex in the set, do not add it 
to the set. 

Mentions but fails to recognize it as satisfying 
condition 

Any other 
condition 

LO 3 
Mentions the optimum selection criteria – Select vertices in the increasing order 

of their degree. OR 
Leave out the vertices which have higher degree. 

Mentions but fails to recognize it as selection 
criterion OR 

Any implicit notions of increasing/decreasing 
vertices 

Any other 
condition 

LO 4 
Checks for satisfying condition at each selection, OR 

Checks the following condition at each selection: If the vertex is already 
connected to a vertex in the set, do not add it to the set. 

Checks the satisfying condition/ inverted 
condition at some selections 

Never 
checks 

LO 5 
Chooses according to optimum selection criterion at each selection. OR 

Discards the vertices with higher degree at each selection and the answer is 
correct. 

Chooses according to selection criterion/ inverted 
selection criterion at some selections. 

Never 
checks 

65



E.  Data Analysis 
The frequency and mean scores of the students according 

to the rubric was analyzed to test students’ learning. The 5 
point Likert scale data obtained from the survey was analyzed 
to see students’ perceptions. 

V. RESULTS 
For the first question in the post test, which evaluated the 

understanding of the minimum spanning tree problem, we saw 
that the control group students performed better than the 
experimental group students. Here the optimum selection 
criterion was direct: In order to reduce the weight of the tree, 
check the weight of each edge while selecting. In the 
maximum independent set problem, however, the optimum 
selection criterion was not so obvious: The students had to 
find out that, in order to maximize the number of vertices in 
the set, the vertex with the minimum degree has to be selected 
at each step. 

In order to answer our first research question, we measured 
learning using frequency and mean scores in post-test.  

For answering the second question, we consider the 
average Likert score for each group in survey. The 
experimental group students felt that GATutor helped them in 
solving the new (maximum independent set) problem whereas 
some control group students disagreed that the animations 
helped them in solving the new (maximum independent set) 
problem. 

 
A. Learning 

The learning was measured by the frequency and mean 
scores obtained according to the rubric given in table 1. 
 

Mean scores: Learning is indicated by the mean scores 
obtained by each group on each of the learning objectives. The 
mean scores are listed in the Table 2. From this table we can 
observe that, experimental group students have scored more 
marks on every learning objective but one. 

 
Fig. 4: Frequency of the Rubric scores for LO3 

 
Frequency: If we zoom in, we see that the difference in 

mean scores in LO3 and LO5 is high. Of the five learning 

objectives we have, the third one is most important for greedy 
algorithms since it measures the concept of optimum selection 
criteria. Fig. 4 shows the frequency of rubric scores for both 
groups for LO3: The students will be able to recognize – the 
optimum selection criterion. The rubric scores were 0, 1 or 2 
depending on whether students were correct, partially correct 
or not correct. Even though we couldn’t test for statistical 
significance because of the small sample size, we observe that 
more students from experimental group have scored 2. On the 
other hand more students from control group have scored 0.  

Both animation and GATutor checked for satisfying 
condition every time – This might be the reason behind score 
on LO4 being equivalent in both groups (LO4: The students 
will be able to write the steps according to satisfying condition 
involved in greedy approach for solving the given problem). 
But the GATutor also gave feedback on selection criteria and 
the animations didn’t. This difference can be seen in 
application of selection criteria each time. Again, no statistical 
tests were done because of the smaller group size, but the 
obtained score indicate that the experimental group students 
score higher on an average when compared to students from 
control group. 
 

 
Fig. 5: Frequency of Conceptual LOs 

 
Stratified results: We have stratified the learning 

objectives as conceptual and procedural based on Clark’s 
types of content [8]. LO1, LO2 and LO3 are conceptual since 
they involve understanding of three properties and recognizing 
whether the given problem has those three properties. LO4 
and LO5 are procedural because they involve applying LO2 
and LO3 at each selection. Now, we consider the answer to 
each LO as a data point so each student will have three data 
points. Here also we can see that more number of students 
from experimental group have scored ‘2’ in both conceptual 
and procedural learning objectives. This is depicted in Fig. 5. 
 

We observe that the difference in conceptual LOs is 
statistically significant as found by two-tailed independent t-
test [n=27, t= 2.015, p= 0.049] at �=0.05.  

B. Perception 
In order to measure the attitude of students towards 

GATutor, we used the survey given in table 3. 
The table shows that more students from the control group 

felt that they can design greedy algorithms for new problems. 

5

3

1

4

2

4

0
1
2
3
4
5
6

0 1 2

Control

Experimental

9 11
76 5

16

0 1 2

Rubric Score

Control Experimental

TABLE 2: MEAN SCORES ON RUBRIC 
 LO1 LO2 LO3 LO4 LO5 

Control 1 1.2 0.56 1.67 0.67 
Experimental 1.4 1.3 1 1.4 1.1 

 

66



But less number of students from the experimental group felt 
the same. But for solving the maximum independent set 
problem, more students from experimental group felt 
confident. 

VI. DISCUSSION AND CONCLUSION 
The first of the two research questions we considered was, 

how good is GATutor, for students to come up with their own 
greedy approach to solve a problem? In the experimental 
group, those who showed evidence of LO2 and LO3 
(Conceptual understanding of satisfying condition and 
selection criteria) in phase 1, were also able to explicitly state 
LO2 and LO3 in the phase 2. This shows that the selection 
criteria they used were not intuitive but conscious decisions. 
This is also supported by the survey results. Most of the 
control group students on the other hand, did not show 
evidence and were not able to state it properly even when they 
found the optimum selection criterion.  

 
Another observation we made was most of the students 

who worked with GATutor had selected total/partial greedy 
optimum selection criterion. The reason might be, GATutor 
taught them recognizing and applying the satisfying condition 
and selection criteria and not directly solving the problem. It 
was the students who selected the options, ‘saw’ whether it 
was correct or not and decided themselves. So it was easier for 
them to choose the 2 conditions while designing a greedy 
algorithm for a new problem. 

 
In both LO3 and LO5, the experimental group has scored 

almost double the control group. Here, the experimental group 
students have ‘seen’ different selection criteria, and got 
explanatory feedback at every selection. In maximum 

independent set problem, this directed students to try many 
selection criteria while selecting vertices. These are supported 
by the following anecdotes from the interview. 
 “…then I tried the outermost ones (vertices) and I found the 
way to find the maximum cardinality… It has the least number 
of edges connected to it…” 
“…All these have too many interconnections. So instead of 
selecting these we can select (vertices) A and K (with least 
degree)…” 
“…An animation can only help you learn its content. Any 
doubt, clarification, or further application, may not be easily 
answered…” 
 

The second research question was about the perception of 
the students about GATutor and whether they thought 
GATutor/animation helped them in solving the maximum 
independent set problem. It is interesting to see that all the 
students in the experimental group found it easy to attempt the 
maximum independent set problem even though only 50% of 
them felt that GATutor helped them to learn designing of 
greedy algorithm. On the other hand only 75% of the students 
in control found it easy to solve maximum independent set 
problem and 87.5% of the students think that animations and 
the study material helped them to learn greedy algorithm 
design for similar problems. But as we observe from the post-
test, experimental group students were better in designing 
greedy algorithms than control group students. 

 
These results suggest that animations are better for solving 

applying the same algorithm in different situations. A guided 
discovery based tutor that leads the students through design 
decisions is better for them to learn designing algorithms. 
GATutor can become an interesting tool to teach design of 
greedy algorithms along with classroom teaching. But since 
this is a pilot study with less number of participants the 
generalizability of the results might be less.  

ACKNOWLEDGMENT 
We would like to acknowledge Prof. Sahana Murthy, IDP – 
Educational Technology, IIT – Bombay for guidance in 
research design. We are thankful to Chakrapani D.S, Dept. of 
CSE, JNNCE, Shimoga and Alaka Ananth, Dept. of CSE, 
NIE, Mysore. 

REFERENCES 
[1] Alfieri, L., Brooks, P. J., Aldrich, N. J., & Tenenbaum, H. R. Does 

discovery-based instruction enhance learning? Journal of Educational 
Psychology, 103 (1), Feb 2011, pp. 1 - 18. 

[2] Algorithmic Thinking. Retrieved July 19, 2015, from Teaching London 
Computing: http://teachinglondoncomputing.org/ 

[3] Anderson, L. W. A taxonomy for learning, teaching, and assessing: A 
revision of Bloom's taxonomy of educational objectives. Allyn & Bacon, 
2001. 

[4] Baeza-¥ates, R. A. Teaching algorithms. ACM SIGSAT News, 1995, pp. 
51-59.  

[5] Begosso, L. C., Begosso, L. R., Gonçalves, E. M., & Gonçalves, J. R. 
An approach for teaching algorithms and computer programming using 
Greenfoot and Python. IEEE  Frontiers in Education Conference, 2012,  
pp. 1-6 

TABLE 3: SURVEY QUESTIONS WITH RESPONSES THAT 
AGREE/STRONGLY AGREE 

No Statement 
%Agreed 
(control) 

(N=8) 

% Agreed 
(experimental) 

(N=6) 

1 

I have understood greedy 
algorithmic design technique as 
mentioned in the learning 
objective. 

100 83.33 

2 
I found it easy to attempt the 
maximum independent set 
problem 

75 100 

3 

I will be able to design a 
greedy algorithms for similar* 
problems. (*minimum 
spanning tree & Maximum 
independent tree type of 
optimization problems) 

62.5 66.67 

4 

GAtutor helped me understand 
the concepts related to greedy 
algorithmic design, as 
mentioned in the learning 
objectives. 

87.5 83.33 

5 
GATutor helped me in solving 
the maximum independent set 
problem. 

62.5 83.33 

6 
GATutor helped me learn 
greedy algorithm design for 
similar problems. 

87.5 50 

*(For control group, GATutor in the survey was replaced by animation and study material) 

67



[6] Bransford, J. D. & Schwartz, D. L. Rethinking transfer: A simple 
proposal with multiple implications. Review of research in education, 
24, 1999, pp. 61-100. 

[7] Chinneck, J. W. Retrieved June 29, 2015, from Practical Optimization: 
A Gentle Introduction: 
http://www.sce.carleton.ca/faculty/chinneck/po.html, 2006. 

[8] Clark, R. C., & Mayer, R. E. E-Learning and the Science of Instruction: 
Proven guidelines for consumers and designers of multimedia learning. 
San Francisco: Pfeiffer,  2007 

[9] Clark, R. E. How much and what type of guidance is optimal for 
learning from instruction. In T. M. Sigmund Tobias, Constructivist 
Instruction: Success or Failure? 2009, pp. 158-183  

[10] Combéfis, S., & de Saint-Marcq, V. L. C. Teaching Programming and 
Algorithm Design with Pythia, a Web-Based Learning Platform. 
Olympiads in Informatics, 2012, pp. 31-43. 

[11] Cormen, T. H. Advanced Algorithms-CS 6/76101. The MIT Press, 2001. 
[12] Futschek, G. Algorithmic thinking: the key for understanding computer 

science. Informatics education–the bridge between using and 
understanding computers. Springer Berlin Heidelberg, 2006, pp. 159-
168. 

[13] Ginat, D. The greedy trap and learning from mistakes. Proceedings of 
the 34th SIGCSE Technical Symposium on Computer Science Education 
SIGCSE’03, 2003 

[14] Naps, T. L. JHAVÉ: Supporting Algorithm Visualization. Computer 
Graphics and Applications, 2005, pp. 49-55. 

[15] Roll, I., Holmes, N. G., Day, J., & Bonn, D. Evaluating metacognitive 
scaffolding in guided invention activities. Instructional science, 2012, 
pp. 691-710. 

[16] Shaffer, C. A. Algorithm visualization: The state of the field. ACM 
Transactions on Computing Education, 2010. 

[17] Ullrich, T., & Fellner, D. AlgoViz-a computer graphics algorithm 
visualization toolkit. World Conference on Educational Multimedia, 
Hypermedia and Telecommunications, 2004, pp. pp. 941-948. 

[18] Velázquez-Iturbide, J. Á. The design and coding of greedy algorithms 
revisited. ACM Innovation and technology in computer science 
education, 2011, pp. pp. 8-12 

[19] Velázquez-Iturbide, J. Á. An Experimental Method for the Active 
Learning of Greedy Algorithm. Transactions on Computing Education, 
2013 

[20] Velazquez-Iturbide, J. A. GreedEx: A Visualization Tool for 
Experimentation and Discovery Learning of Greedy Algorithms. 
Transactions on Learning Technologies, 6(2), 2013, pp. 130-143. 

[21] Woods, D. R. Helping your students gain the most from PBL. Asia-
Pacific Conference on PBL. Singapore, 2000 

[22] Yoo, J. Y. Can we teach algorithm development skills? ACM 
Proceedings of the 50th Annual Southeast Regional Conference, 2012, 
pp. 101-105 

 
 

68


