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Abstract: When undergraduate students engage with computational thinking (CT) activities that
are authentic to them, it adds not only meaning to their problem-solving actions but also a variation
to their strategies and mechanisms applied during problem-solving, termed here as learners’
embodied processes. Through the perspective of designing for embodied cognition, maintaining
such possibilities for variation in solution pathways could be the key to making problem-solving
authentic to the learners. Using the 4E cognition narratives of two undergraduate Arts learner’s
pathways in solving computational tasks in an authentic setting, we speculate that such multiple
solution pathways need to be evaluated in pilot studies for density of significant actions
during problem-solving to prioritize the actions that show spaces which require the design of
embodied scaffolds.
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1. Introduction

Initiating novice learners into the world of problem-solving using computational thinking (CT) is
challenging because the factors of identity and meaningfulness of computation remain distant from the
learners’ real-life context (Liesaputra, V, 2020). One of the major challenges in learning computational
thinking is its associated abstractness of the concepts and procedures. Visual programming environments,
such as scratch, NetLogo, Greenfoot, etc., attempted to reduce the abstractness by replacing the abstract
syntax of the constructs with visual block-like elements. These visual programming environments have
been proven to be significantly effective in training students' CT skills (Brennan & Resnick, 2012). A
similar approach has been seen in using visual programming by Bers, Flannery, Kazakoff & Sullivan,
(2014) for working with robots. Programmable robots-based learning activities reduce syntax's
abstractness by employing visual programming environments similar to NetLogo and Scratch (Kim &
Jeon, 2007) to program their robots. The fact that the robots are physical and tangible, and students can
systematically manipulate them through coding, further bridges the gap between abstract CT constructs
and reality. However, programmable robots have limitations in terms of the problem-solving contexts they
offer, i.e., most programmable robots-based activities employ abstract and imaginary scenarios and lack
authentic real-life problem contexts (Bers, Bers, Flannery, Kazakoff & Sullivan, 2014). Programming the
robot itself when tested as a way of teaching CT, is designed through a technocentric lens (Sengupta,
Dickes, & Farris, 2018) where considerable time needs to be spent in the learning curve of the technology.

This leads to some of the definitions of CT in CT education that focus on not only the skills
applied in problem-solving, but also on the need to identify computational aspects and computational
potential in the real world (Royal Society, 2012). Constructionist approach (Harel & Papert, (1991) and
Situated learning (Lave & Wenger, 1991) based methods designed to overcome this challenge created a
remarkable solution for engaging such learners with support towards connecting computational aspects in



their context. Learning while being situated in authentic real-life scenarios has been argued as a better
learning practice by such literature in cognitive sciences.

Traditionally, the processes of thinking and reasoning are predominantly understood using the
lens of information processing theories of cognition (Pande & Chandrasekharan, 2017; Reynders et al.,
2020). These approaches assert that a problem solver first engages in the extraction of information from
the content embedded in the learning or task environment and then the learner performs thinking or
reasoning about ‘using’ this extracted information. However, the new approaches to cognition (e.g. 4E
cognition; Menary, 2010; Newen et al., 2018) and situated learning (Sentance & Humphreys, 2018)) insist
that cognition and knowing cannot be separated from bodily actions and context. The embedded,
embodied and enactive cognition approaches regard one's thinking and reasoning processes, actions, and
the environmental elements being interacted with, as entangled together (Pande, 2021).

In summary, we derive from our previous work that embodied narratives and analysis of actions
in context intertwined with cognition would lead to the exploration of learners’ problem-solving processes
(Satavlekar, et al., 2021). Extending the previous work, we now look into the question of ‘how’ such
embodied narratives can be useful from the perspective of design. We hypothesize that such exploration
would be useful in identifying sites where embodied scaffolds can be designed for the novice CT learner.
The situated learning and embodied cognition desirable for acquiring CT skills would also make room for
reflection spots leading towards discoveries and multiple real-time problem-solving pathways, which add
to the knowledge of either the technology or the CT practices for the learners.

In order to test this hypothesis, we conducted a pilot study with two undergraduate participants
and provided them with IoT devices to engage in real-life computational problem-solving scenarios. Our
broad research question for this study is ‘What can be the implications of novice adult learners’
problem-solving processes in embodied activity design rooted in real-life CT-based context?’ We propose
the use of IoT devices and associated utility platforms to design learning activities that can help students
practice CT constructs. Utility platforms such as IFTTT, Google Home, Alexa, etc. help configure the
various IoT devices to work together and allow customizations based on the user's authentic
problem-solving needs. Examples of possible student tasks are given below.

Example: Students are given a task to configure a smart light bulb such that it automatically
switches on at the start of the evening and switches off before a predefined bedtime.

In the above example, the task of configuring the IoT devices, similar to the programming
activities, will require students to apply CT skills to accomplish the needed behaviors from the IoT
objects. In this paper, we propose to exploit such affordances of the IoT objects and the utility platforms
to make novice CT learners practice various CT constructs by programming Real-life smart devices.
These objects are slowly becoming ubiquitous in many parts of the world and society. Application of such
platforms that are situated in the real-world context (Lave, J., & Wenger, E., 1991) and have an impact on
everyday life activities makes them more powerful as tools to think with to nurture CT skills. This paper
reports the various different pathways that were found to contain significant action-cognition sequences.
While doing so, we also analyze the density of such sequences and the agent or the actors involved, to
speculate the implications of designing embodied scaffolds in the future iteration.

2. Methodology

The study is an open-ended qualitative pilot investigation of novice learners’ actions and
cognition while solving computational thinking tasks grounded in their real-life context. The participants
were chosen using convenience sampling. There were two participants, one male, and one female, (age 20
and 19 years respectively). They were second and third-year language (Sanskrit) undergraduates having
no prior exposure to Computer Science in academics. These participants were chosen in order to know
how adult learners who are novices to the CT domain interact with the smart programmable
computational objects in their daily life and what could be challenges they face. In-person sessions were



conducted over a duration of approximately 3 hours. The session included a familiarization phase and an
unguided problem-solving phase as shown in figure 1. The tasks in both these phases were aligned
according to the increasing order of complexity of the problem as described in the figure.

Figure 1. Phases of activities in the study (Satavlekar, et al., 2021)

Data collection and Analysis
Semi-structured interviews were administered with the objective to make the participants retrospectively
reflect on their problem-solving processes. The interviews attempted to be as non–leading as possible:
with questions like “can you narrate one of the activities, how you went about solving the problem in
your own words”. However, encouraging the students to be as detailed as possible about their experience
(“Did you get bored or tired during the activities? Were there any instances which you felt interesting or
could have been interesting?”) tended to open up more information. Retrospective interviews were
conducted towards the end of the study. The researcher also asked questions between the two phases, to
confirm the participant’s willingness to continue or abandon the next activity. In addition to the interview
data, we also collected the video recording as observation data. Both the interview and video transcripts
were analyzed to get a clearer picture of how the participants got familiar with the embodied environment
and how they performed the given CT tasks. Using the observation and interview data from our two cases
we tried to understand how the participant’s engagement with the tasks in the respective sessions may
have triggered CT in the participants.

Coding of the data
We performed open and focused coding of the video transcripts and identified multiple significant roles
and actions corresponding to those roles associated with learners’ problem-solving occurring in the
unguided problem-solving phase of the session.

As seen in table 1, the roles performing as actors or agents during the problem-solving are- (i) the
mentor (M), (ii) the learner (L), and (iii) the systems or application interfaces communicating through
voice and visuals (S) and the combinations of two or more actors among these three. For the
corresponding combination of actors, we use an abbreviated symbol as a prefix to the respective action
code. The actions are inferred from the actors’ problem-solving processes keeping in mind two things- (i)
the list of CT skills and practices (CSTA, & ISTE., 2011) such as algorithmic thinking, logical thinking,
testing, and debugging, and (ii) the response categories from the system such as showing the success of
the problem being solved (RS) or expression of a constraint (C). For example, ML-DBUG specifies that
the action DBUG is performed by both, the mentor and the learner, the mentor being the larger



contributor. The contribution is categorized based on which actor performs as the driving anchor for that
specific action. An example for clarification would be - if the learner attempts to solve a particular
problem in a stepwise manner by taking the smartphone in his/her hand, we term it as L-ALGO, whereas
if a mentor suggests what the learner should do next and if the learner follows or discusses upon such
suggestion, we would term it as ML-ALGO.

Table 1. Codes generated in data analysis showing the actors and their cognitive actions

Encoding Code Meaning

Actors

M Mentor

L Learner

S System

ML Mentor and learner verbal interaction

LS Learner and system verbal interaction

Actions

DSCS Discussion

XPLR Exploring action

ALGO Algorithmic thinking

LOG Logical thinking and/ or decision making

DBUG Debugging actions

C System Constraint identified or reported

RS Success response

RNS Unsuccessful response

After the encoding, we analyze the action sequences in terms of pivotal points in problem-solving - such
as the problem assignment, first solution, difficulty scenario faced or constraint identification, a revision
(or multiple revisions) of the solution, successful final completion of the solution, and the conclusion. We
identify the time spent to reach such pivot points and compare the significant actions occurring during this
timespan to calculate the density of significant actions per minute. We compare the two learners’
problem-solving processes in terms of the density and the learner’s involvement as an actor between the
particular pivot points.

3. Results

3.1 Revision and Reflection

Figure 2 shows the significant actions in context along with the learner’s cognition of CT and the system
in two stages: the upper part describes unguided activity 1where the learner has to save the smartphone
battery by switching off applications such as Bluetooth or reducing the smartphone brightness, etc. The
first learner begins with initial unguided activity and quickly designs the solution. When the mentor
confirms the solution and asks the questions, “how will you test this activity, can we check this right now”
and “is this going to achieve what was expected in the problem statement”, the learner faces a
REFLECTION SPOT, pivotal to the debugging actions ahead carried out with system application to
revise the initial solution and make it more cohesive to the given problem statement. This also leads to



learning about the application interfaces used for problem-solving (Satavlekar, et al., 2021) which may be
useful for the learner in solving more complex problems.

Figure 2. Learner 1’s multiple pathways and density of significant actions in embodied
problem-solving processes of two unguided activities

Detailed Narrative: Learner 1
Analysis of a more complex activity is seen in unguided activity 2 part of figure 2, where the learner is
trying to connect a motion sensor to one of the voice agents in order to program it to send an email alert
when any motion is detected nearby. The learner first begins with an exploration of the various
smartphone applications associated with the motion sensor operation and takes approval from the mentor
to try out the different applications available in the smartphone from time to time. Figuring out the
proprietary application’s functionality to operate the Motion sensor is relatively easy for the learner but
the learner is concerned about how to integrate it with an application to set up the required routine.

Here onwards, the learner seeks a mentor’s support, and together, they engage in multiple
attempts to figure out which application would be suitable for the purpose, but the system shows an issue
with connecting the two applications. The learner checks the manual of the motion sensor and finds
Amazon Alexa can be integrated. Although the application is identified now, the learner struggles with
connecting the two applications multiple times. During this entire process of thinking, following the
stepwise procedure as per the procedure manual and Alexa exploration, the learner is the prominent actor
operating the system application and proactively communicating with the mentor. However, as it does not
yield the desirable outcome, the mentor attempts to solve the connection issue more prominently than the
learner by taking control of the system application for more instances than before. Eventually, they figure
out the issue and connect the two applications and the mentor shows the learner how to test and confirm
that the two applications are communicating with each other and are able to detect the motion sensor.

From this point, we see that the mentor is acting as the prominent support for the learner in every
action such as debugging, forming the revised solution by applying logical and algorithmic thinking, and
helping the learner actively with the testing tasks. The system application Alexa gives out a notification of



motion detection sensed from the motion sensor, but the task of triggering an email remains unsolved. At
this point onwards though, the learner takes up the charge and communicates with the system application
for sending the email when a notification is received. The mentor assists the learner now with debugging
and they finally get closer to the desired outcome. In concluding the activities, the mentor creates
REFLECTION SPOTS for the learner which leads to a reflective evaluation of the solution designed by
the learner as compared to the requirement of the initial problem and a discussion about the limitations of
the system application.

Learner experience report from interview transcript excerpts
Q1. Interviewer: “what was your experience and can you tell me say, any thing interesting you may

have learnt today?”
Learner: “Like.. exploring the apps for the first time.. Then, learning the interface or learning the
features of the app.. Then third is the operating those.. With help, with guidance.. Fourth will be
discovering some new operations for that. Like we did for the the motion sensor and stuff. We..
we have to discover how we should link it to to Alexa.. first one. I think it would be
comprehension. Like how much I would be able to comprehend with future.. This will be first
test..”

Q2. Interviewer: if everything would have been already connected, do you think it would have been
better to complete the tasks faster?”
Learner: “Uhh.. for the time, when we were doing the amazon part in first half. That time I
thought that ready thing would have been better.. because we have to sensor two or more times..
so that was time-consuming. But at the time we connect the motion sensor, that was new part.
Matlab (Translation: I mean), we have to link it through three parts.. Matlab (Translation: I
mean), firstly we connected it through OKOS.. then through Alexa. Then again OKOs.. then
IFTTT.. So, that was just interesting part.”

Q3. Interviewer: “Now we spent 3 hrs today. Did you feel bored? Or did you feel like 3 hrs period was
appropriate?”
Learner: “No.. I mean, first of all, this computer related stuff is interesting to me. I mean, I could
perform all these tasks. So I was not bored as such. But considering time period, if we had not
spent some time in the middle, we could have done more activities.”

4. Discussion

Presentation of learners’ embodied processes in the context of CT-based problem-solving help us
understand that it is a time-consuming process that does not follow a single straight path. The multiple
pathways and struggles of the learner’s cognitive processes may have been frustrating for the learner, but
the answer to the interview questions Q1 and Q2 inform us that the learner was engaging in the activities
with retained interest.
Takeaways from narrative

1. The prominent actors or combinations of actors vary across the whole computational
thinking-based problem-solving process. In the current analysis, this prominence is only
attributed to the proactive actor in verbal communications, cognition, and actions among the three
(learner, mentor, and system). No other measurement to quantify the contribution of the actors is
applied here.

2. A single problem given in this context does not have a single solution, and every solution
designed by the learner may not always be accurate. REFLECTION SPOTS created by the
mentor for the learner play an important role in initiating the evaluation of the designed solution,
attempts of identifying the limitations of the system, and also optimizing the current solution.



3. There is a need to design mentor protocol and scaffolds in such embodied problem-solving
approaches involving multiple pathways and iterations such that, the learner does not become
dependent upon the mentor to solve the problem. The ultimate goal of the problem-solving
exercises may not be to achieve the best solution but to engage with activities that require
cognitive experiences leading toward the practice of CT skills during the process. Even so, the
learner’s autonomy and in turn, authentic engagement may be hampered in absence of the
protocol.

Speculating a takeaway from the density of significant actions
The analysis of the density of significant actions could be an important aspect while designing

embodied problem-solving activities. We base this speculation on the analysis that shows how the learner
and the mentor had to spend significant time on activities that involved less computational
thinking-oriented significant tasks in the majority part of the complex unguided activity of
problem-solving. We can support this speculation with the learner’s answer in the first half of the Q2, that
it may have been better to exclude the connection in the initial task. The learner may not desire to spend a
significant amount of time on actions that are not cognitively productive for the learner. The learner may
also want to reserve this time for solving more such cognitively intense tasks, as he expressed in the
answer to Q3.

The presented analysis of cognitive processes can also be effective in informing WHO is the
prominent actor while dense (more significant actions in less time) are being performed. This will be
useful in designing scaffolds and mentor protocol as a scaffold, such that the problem-solving activities
remain authentic to the learner and the learner does not become dependent upon the mentor, as stated
earlier.

We end this discussion with the issue that in this study we have only analyzed a single learner’s
actions through embodied narrative and we do not intend to make any claims about the design or learner
experience because of the small sample. Our analysis of the second learner shows that the pathways
followed are even more different in terms of actions of problem-solving, cognitive processes, the time
taken to uncover each point of success, limitations, and revision. However, both the learners completed
the activities with enthusiasm and expressed interest in solving more such complex computational
problems in their semi-structured interviews. Presenting an experience report and starting the discussion
about a novel angle of analysis with importance to the density of significant actions in these multiple
pathways is our sole intention. We need to iterate this analysis over our next study participants to provide
strong support to the speculated embodied design implication. An analysis similar to or inspired by the
one presented in this paper, exploring the multiple pathways of learners’ embodied problem-solving
processes in a real-life CT-based context may be a rich source of information to tap into to design more
embodied activities for the future.
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