
1

FOSTERING SOFTWARE CONCEPTU.AL

DESIGN VIA

THE FUNCTION-BEHAVIOUR-STRUCTURE

DESIGN FRAMEWORK

A thesis submitted in partial fulfilment

of the requirements for the degree of

Doctor of Philosophy

by

T.G.Lakshmi

(Roll Number: 154380002)

Supervisor

Prof. Sridhar Iyer

Interdisciplinary Programme in Educational Technology

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY

2020

2

Dedicated to

my parents-in-law

Amma and Appa, this work is dedicated to your

unconditional and unwavering support.

3

Declaration

I declare that this written submission represents my ideas in my own words and where others'

ideas or words have been included, I have adequately cited and referenced the original

sources. I also declare that I have adhered to all principles of academic honesty and integrity

and have not misrepresented or fabricated or falsified any idea/data/fact/source in my

submission. I understand that any violation of the above will be cause for disciplinary action

by the Institute and can also evoke penal action from the sources, which have thus not been

properly cited, or from whom proper permission has not been taken when needed.

(Signature)

(Name of the student)

(Roll No.)

Date: _____________

4

Approval Sheet

This thesis titled “Fostering software conceptual design via Function-Behaviour-

Structure design framework” by T.G.Lakshmi is approved for the degree of Doctor

of Philosophy.

Examiners

Supervisor (s)

Date: Chairman

Place:

5

Abstract

Engineering design is an ill-structured problem solving and open-ended task (Dym et

al., 2005) because design problems have ill-defined goals, states and solution steps.

Engineering graduates are expected to design solutions to open-ended real world

problems. Due to the complex nature of engineering design, the teaching and learning

of this skill is reported to be difficult (Dym et al., 2005). Conceptual design is an

important and critical step in design (Pahl et al., 2013). Conceptual design is

described as a process in which the functional requirements of the design problem are

transformed into descriptions of solution concepts (Chakrabarti & Bligh, 2001).

Although all the processes in design are vital for the end result, a strong case can be

made for selecting the conceptual design as most critical to the final design

(Chakrabarti & Bligh, 2001). The conceptual phase of design thus becomes very

significant, as designers tend to develop numerous early ideas and solutions in this

phase.

Software design has several common activities with other design domains

(Cross et al., 1996). However, the dynamic and intangible nature of software poses

unique challenges in software conceptual design (SCD), specifically, components are

logical and intangible, and behaviours of such intangible components need to be

simulated along with simulation of end-users interactions (Petre et al., 2010). Experts

create integrated solutions that fulfil the requirements. Novices find designing

software solutions for open-ended problems daunting. There have been previous

studies of novice difficulties (Eckerdal et al., 2006), however the underlying

mechanism that causes these difficulties has yet to be unearthed. Moreover the ways

to alleviate them in the context of SCD have not been reported. Current teaching-

learning methods do not explicitly train students to overcome these difficulties

(Armarego, 2009). There is a need to understand novices’ design processes and

explicitly train computer-engineering students in SCD. This is the motivation of this

thesis; firstly, to develop an understanding of novices’ design processes in SCD and

secondly use this understanding to design supports for novices’ to create integrated

SCD.

We used the function-behaviour-structure (FBS) design framework (Gero &

Kannengeiser, 2014) as a lens to analyse novice processes as well as support the

6

creation of SCD. We followed a design based research methodology (Barab, 2014).

We started with understanding novices’ design processes, the design strategies and

cognitive processes. To identify these, we used protocol analysis (Gero et al., 2011)

with novice computer engineering students (Study 1), to collect data, as they create

software conceptual design for open-ended problems. We found that novices are

fixated to a single view of the software solution and unable to utilize multiple formal

representations of UML to model SCD. Additionally the solutions that novices create

lack integration.

FBS framework provides an integrated view of design. The individual F/B/S

design elements correspond to the UML representations use case, class diagram and

sequence diagram respectively. In a software engineering course, students learn about

syntax, semantics and processes to create the formal (UML) representations

(Medvidovic et al., 2002). The representations are presented as isolated views of the

design solution. However to create cohesive solutions that fulfil requirements, i)

designers need to utilize the various representations and ii) ensure that the different

representations are integrated. Experts use heuristics techniques to do all of them

together. Novices need to be explicitly trained to be able to do so.

Linking the FBS design elements correspond to the software design processes

of requirement definition, implementation, assessment, analysis, testing (Kruchten,

2005). We propose a FBS based intervention, where the learners are scaffolded to

identify and then link FBS design elements from a given software design problem. In

the proposed intervention we manifest the FBS framework as a graph, where the

F/B/S design elements form the nodes and links connect the FBS nodes. This FBS

representation, which we call the FBS graph, is a visualization tool for learners to

interact, create and evaluate the SCD of design problems. In the intervention we

support the novices towards building the integrated models of the conceptual design

via the FBS graph.

In the initial version of the interventions we provided novices with the FBS

definitions, worked examples of FBS graphs for design problems and procedural

information of creating UML representations from FBS graphs. We conducted lab

studies with novices (study 2 & 3) to understand their difficulties. We analysed the

FBS graphs and used thematic analysis (Braun & Clarke, 2017) to analyse

participants' perceptions of difficulties. We found that novices need support to

understand syntax and semantics of FBS graph. They also need scaffolds and prompts

7

to create a FBS graph. Study 1, 2 and 3 provided us with a set of features, scaffolds

and task structure for the creating the FBS graph based intervention. These findings

formed the requirements for the next cycle of design-based research (DBR).

The set of features, scaffolds and task structure were used to design a

prototype of a technology enhanced learning environment. We employed heuristic

evaluation (Nielsen, 1992) to identify usability problems and redesigned the user

interface. This led to the learning environment named ‘think & link’. ‘think & link’

incorporates the pedagogy of improvable models (Dasgupta, 2019) and consists of

tasks at progressive planes of cognition – doing, evaluation and synthesis. The tasks

are sequenced such that the learners are explicitly taken through all planes of

cognition. There are three phases in ‘think & link’. In the first phase the problem

context (mood based music player), a non-editable FBS graph and a series of

questions (activity) are provided to the learners to construct the FBS conceptual

model. Followed by the second phase where the learners need to edit the FBS graph

and evaluate it in the same problem context (mood based music player). The last

phase in the system is for the learner to create a FBS graph in the new problem

context set by them.

We evaluated ‘think & link’ in two field studies (study 4 & 5). In these field

studies, we captured the pre-post solution artifacts, conceptions, perception of the

SCD process and the learner interactions in the learning environment. We evaluated

the pre-post solution artifacts based on design criteria by Eckerdal et al. (Eckerdal et

al., 2006). Our findings indicate that participants shifted towards creating dynamic

representations for SCD. From thematic analysis (Braun & Clarke, 2017) of the

participant conceptions and perceptions of the SCD process we saw a shift in

understanding of SCD and conceptual change (Vosniadu, 2007; Vosniadu, 2019) in

participants’ perception of processes of SCD.

The contributions of this thesis include (i) a detailed characterization of the

novice software design processes; (ii) a FBS graph-based pedagogy for teaching-

learning of integrated SCD; (iii) set of features and scaffolds necessary for teaching-

learning of integrated SCD that supports novice design processes; and (iv) a teaching-

learning environment for learners which also includes an instructor authoring

interface.

Keywords: Software conceptual design, function-behaviour-structure design framework,

novice software design processes, technology enhanced learning environment

8

Table of Contents

Chapter 1	 19	

Introduction	 19	
1.1	 Background and Motivation	 19	
1.2	 Research Goal	 20	
1.3	 Solution Overview	 21	

1.3.1 Theoretical Basis	 21	
1.3.2 Solution Process	 22	
1.3.2 ‘think & link’ Pedagogy	 25	

1.4	 Research Questions	 27	
1.4	 Scope of thesis	 30	

1.4.1 Design Problems	 30	
1.4.2 Participants	 31	
1.4.3 Learning conditions	 32	
1.4.4 Technology	 32	

1.5	 Contributions	 32	
1.6	 Structure of Thesis	 33	

Chapter 2	 34	

Review of Literature	 34	
2.1	 Organization of Literature Review	 34	
2.2	 What is software conceptual design?	 35	
2.3	 What are the design strategies and cognitive processes involved in SCD?	 39	
2.4	 How does teaching and learning of SCD happen?	 42	
2.5	 What are the difficulties that novices encounter in SCD?	 44	
2.6	 What are the theoretical frameworks to examine and guide SCD?	 46	
2.7	 Examining and guiding activities of SCD using FBS design framework	 47	
2.8	 Chapter Summary	 51	

Chapter 3	 53	

Research Methodology	 53	
3.1	 Choosing a research methodology	 53	
3.2	 Design-Based Research Iterations	 55	

3.2.1	 Learner needs analysis	 57	
3.2.2	 Design Based Research Cycle -1	 58	
3.2.3	 Design Based Research Cycle -2	 60	

9

3.3	 Ethical Considerations	 61	
3.4	 Summary	 62	

Chapter 4	 63	
DBR 1 Problem Analysis: Understanding Novice Design Strategies and
Difficulties	 63	

4.1.	 Method	 64	
4.1.1	 Participants	 64	
4.1.2	 Design Problems	 65	
4.1.3	 Study Procedure	 66	
4.1.4	 Data Source	 67	
4.1.5	 Data Analysis	 67	

4.2.	 Results	 80	
4.2.1 RQ 1.a. What are the design strategies that novices follow while creating a

conceptual design?	 81	
4.2.2 RQ 1.b. What cognitive processes do novices use while creating software

conceptual design?	 95	
4.3.	 Discussion	 98	
4.4.	 Implications for teaching and learning SCD	 100	
4.5.	 Limitations of study 1	 102	
4.6.	 Reflections and Summary	 102	

Chapter 5	 104	
DBR 1 Design and Evaluation: Initial Solution Designs and Evaluation	 104	

5.1.	 Integrated model building	 105	
5.2.	 Theoretical Foundations	 105	

5.2.1 Frameworks to support integrated model building in SCD	 105	
5.2.2 External Representation	 107	

5.3.	 FBS graph based pedagogy	 108	
5.4.	 FBS based learning intervention – I	 110	

5.4.1 Task design and learner activities in FBS graph based learning intervention I	 111	
5.5 Study 2 – Qualitative Evaluation of FBS graph based intervention I	 113	

5.5.1 Method	 113	
5.5.2 Study 2 - Results	 117	

5.6	 FBS graph based intervention II	 124	
5.7 Study 3 – Qualitative Evaluation of FBS based learning intervention II	 126	
5.7.1 Method	 126	
5.7.2 Study 3 – Results	 127	

10

5.8	 Summary of results of study 2 and study 3	 130	
5.7.1 Limitations of study 2 and 3	 131	
5.7.2 Chapter Summary	 131	

Chapter 6	 134	
DBR 2 Problem Analysis and Design of ‘think & link’	 134	

6.1	 Summarizing reflections from DBR iteration 1	 134	
6.2	 Literature review	 135	

6.2.1	 Worked Examples	 135	
6.2.2	 Improvable Models	 136	
6.2.3	 Role of metacognition	 137	

6.3	 Task design and learner activities in ‘think & link’ prototype	 138	
6.4	 Heuristic evaluation and user experience redesign of ‘think & link’ prototype

	 143	
6.4.1 Product and User profiling	 145	
6.4.2	 Usability goal setting	 145	
6.4.3	 User interface evaluation	 146	
6.4.4 User interface redesign	 146	
6.4.5 Redesigned user interface	 147	

6.5	 Features in ‘think & link’	 149	
6.6	 Summary	 153	

Chapter 7	 155	

DBR 2 Evaluation of ‘think & link’	 155	
7.1 Study Method	 155	

7.1.1 Research Questions	 155	
7.1.2 Study Participants	 156	
7.1.3 Study Design and Procedure	 157	
7.1.4 Data Sources	 159	

7.2 Data Analysis	 162	
7.2.1 RQ 3.a After interacting with ‘think & link’ what are the categories of SCD that

learners’ create?	 162	
7.2.2 RQ 3.b After interacting with ‘think & link’ what are the changes in learners’

understanding of SCD?	 165	
7.2.3 RQ 3.c After interacting with ‘think & link’ what changes in the process of

creating SCD do the learners’ perceive?	 166	
7.2.4 RQ 3.d How do the learners’ use the features in ‘think & link’?	 166	

7.3 Results	 167	

11

7.3.1 RQ 3.a After interacting with ‘think & link’ what are the categories of SCD that

learners’ create?	 167	
7.3.2 RQ 3.b After interacting with ‘think & link’ what are the changes in learners’

understanding of SCD?	 172	
7.3.3 RQ 3.c After interacting with ‘think & link’ what changes in the process of

creating SCD do the learners’ perceive?	 175	
7.3.4 RQ 3.d How do the learners’ use the features in ‘think & link’?	 178	

7.4 Discussion	 188	
7.5 Summary	 191	

Chapter 8	 193	
Fostering conceptual change in software conceptual design	 193	

8.1 Unpacking ‘conceptual change’	 193	
8.2 ‘Conceptual change’ in this thesis	 194	

8.2.1 Novice design processes and difficulties in software conceptual design	 195	
8.2.2 					Designing for novices to engage in SCD disciplinary practices	 196	
8.2.3 Conceptual change after using ‘think & link’	 197	

8.3 Summary	 199	

Chapter 9	 200	
Discussion	 200	

9.1 Overview of Research Goals	 200	
9.2 Summary of findings from DBR iterations	 201	
9.3 Mapping the findings to tasks, features and scaffolds in ‘think & link’	 203	
9.4 Addressing the research goals	 204	
9.5 Generalizability	 206	

9.5.1 Novice design strategies and cognitive processes	 206	
9.5.2 FBS graph based pedagogy	 207	
9.5.3 ‘think & link’	 207	

9.6 Limitations	 208	
9.6.1 Learner characteristics	 208	
9.6.2 Design Problem Characteristics	 208	
9.6.3 Singular perspective – cognitive	 209	

9.7 Implications	 209	
9.7.1 Theory of novices’ SCD practices	 209	
9.7.2 Teaching and learning of SCD	 209	

Chapter 10	 211	

12

Conclusion	 211	
10.1 Contributions of thesis	 211	
10.2 Future Work	 213	

10.2.1 Mining for learner actions and FBS graph in ‘think & link’	 213	
10.2.2 Adaptive visual dialogue agent for ‘think & link’	 213	
10.2.3 Large study for understanding of novice design strategies and cognitive processes

in SCD	 214	
10.2.4 Unpacking the conceptual change through large scale implementations of ‘think

& link’ in classrooms	 214	
10.2.5 Implementing assessment in ‘think & link’	 214	
10.2.6 Designing for reflection in SCD among learners and instructors	 215	
10.2.7 Role of affect in SCD	 216	
10.2.8 Role of collaboration in SCD	 216	
10.2.9 Taking turns in design – Role of switching perspectives while design (end user &

system)	 217	
10.3 Final reflection	 218	

Appendix	 219	
A. Consent form	 219	
B. Sample interview questions for study 4 & 5	 220	
C Scripts for analysis of log data	 221	

References	 223	

List of Publications	 247	

Acknowledgements	 250	

13

List of Figures

Figure 1.1 FBS design framework with examples from the design problem of 'mood
based music player' .. 22	

Figure 1.2 Sample function-behaviour-structure (FBS) graph for the design problem
‘mood based music player’ .. 24	

Figure 1.3 Learner activities and tasks in 'think & link' .. 27	

Figure 1.4 Design based research cycles in this thesis .. 28	

Figure 1.5 Chapters in this thesis ... 33	

Figure 2.1 Parent disciplines in this thesis ... 34	

Figure 2.2 Organization of literature review .. 35	

Figure 2.3 Function-behaviour-structure design framework with examples from the
design problem of ‘mood based music player’ .. 48	

Figure 3.1 McKenney and Reeves (2012; p.159) generic model of Educational Design
Research (EDR) ... 55	

Figure 3.2 Typical DBR based research project phases (Barab, 2014) 56	

Figure 3.3 DBR cycles and the goals in this thesis .. 57	

Figure 3.4 DBR iterations, studies and the associated RQs ... 60	

Figure 4.1 Data Analysis for research questions ... 70	

Figure 4.2 Various moves and types of links in a linkograph 75	

Figure 4.3 Coding of participant interview transcripts for cognitive processes 80	

Figure 4.4 Linkograph of par2 ... 84	

Figure 4.5 Linkograph of par4 ... 85	

Figure 4.6 Linkograph of par1 ... 87	

Figure 4.7 Linkograph of par5 ... 88	

Figure 4.8 Linkograph of par3 ... 89	

Figure 4.9 Par4 design strategies across chunks .. 92	

Figure 4.10 Par3 and par5 design strategies across design moves 93	

Figure 4.11 Comparison of design strategies across all participants 94	

14

Figure 5.1 Sample FBS graph for the problem - design a mood based music player 109	

Figure 5.2 FBS graph based intervention I screenshot .. 111	

Figure 5.3 Participant1 FBS graph for phase II task in FBS graph based intervention I
.. 118	

Figure 5.4 Participant1 FBS graph for phase III task in FBS graph based intervention I
.. 119	

Figure 5.5 Participant 2 FBS graph for task 2(induction task) in FBS graph based
intervention I .. 120	

Figure 5.6 Participant 2 FBS graph for task 3 (ideation) in FBS graph based
intervention I .. 121	

Figure 5.7 FBS graph for phase 2 in FBS graph based intervention II 128	

Figure 5.8 Study 3 - participant creating a target FBS graph based on rubric (Lindland
et al., 1994) .. 129	

Figure 6.1 Task design in 'think & link' ... 139	

Figure 6.2 Task 1 - FBS graph as a worked example in ‘think & link’ prototype 142	

Figure 6.3 Task 2 - Recap of FBS conceptual model in ‘think & link’ prototype 142	

Figure 6.4 Task 2- Evaluation of FBS graph based on the rubric in ‘think & link’
prototype .. 143	

Figure 6.5 Process of heuristic evaluation and redesign .. 145	

Figure 6.6 Usability goal setting .. 146	

Figure 6.7 Introduction screen, before and after heuristic evaluation and redesign .. 147	

Figure 6.8 FBS graph editor options .. 150	

Figure 6.9 FBS graph evaluator options .. 151	

Figure 6.10 Features of 'think & link' .. 151	

Figure 7.1 Study 4 & 5 procedure .. 159	

Figure 7.2 Example of an iSAT diagram ... 164	

Figure 7.3 Study 4 - Comparison of pre-post artifact categories generated 168	

Figure 7.4 Study 4 - Pre-post category transitions ... 169	

Figure 7.5 Study 5 - Comparison of pre-post artifact categories generated 170	

Figure 7.6 Study 5 - Pre-post artifact category transitions .. 171	

15

Figure 7.7 Study 4 - Participants' perception of processes in SCD 176	

Figure 7.8 Study 5 - Participants' perception of processes in SCD 177	

Figure 7.9 Participants’ sequence of actions in Phase 1 .. 179	

Figure 7.10 Participants' sequence of actions in Phase 2 ... 183	

Figure 7.11 Participants' sequence of events in Phase 3 .. 186	

Figure 8.1 Conceptual change in this thesis ... 195	

Figure 9.1 Design Based Research cycles in this thesis .. 200	

16

List of Tables

Table 1.1 Software design problems used in this thesis .. 31	

Table 2.1 Definition of conceptual design in various domains 36	

Table 2.2 Software Requirement Specification (SRS) document quality parameters
(Davis et al., 1993) ... 38	

Table 2.3 Quality parameters in SCD .. 38	

Table 2.4 Collating the various study findings from expert-novice (E, N) and senior-
junior (S,J) in design .. 41	

Table 2.5 Examples of elements of FBS design framework .. 49	

Table 4.1 Software design problems given to participants in Study 1 65	

Table 4.2 Categories of software design (Eckerdal et al., 2006) 68	

Table 4.3 Activity coding .. 70	

Table 4.4 FBS codes on the merged timeline .. 71	

Table 4.5 Excerpts of protocols with the coded segments ... 73	

Table 4.6 Template of participant actions provided to LINKODER to generate
linkograph .. 76	

Table 4.7 Conceptual design cognition in SCD (Hay et al., 2017) 78	

Table 4.8 Participants' artifact evaluation using categories by Eckerdal et al. (2006) 80	

Table 4.9 Participants' design moves, links and link index ... 82	

Table 4.10 Participant wise comparison of design strategies 82	

Table 4.11 Cognitive processes in successful participants .. 96	

Table 5.1 Mapping FBS design framework to software engineering process 106	

Table 5.2 FBS graph based intervention I - task design and learner activities 112	

Table 5.3 Rubric for FBS graph evaluation based on Lindland et al. (1994) 115	

Table 5.4 FBS graph based intervention II - tasks and learner activities 125	

Table 5.5 Difficulties that novices faced in FBS graph based learning intervention I &
II ... 130	

17

Table 5.6 Mapping the learning outcome, principles and features in the learning
environment ... 132	

Table 6.1 'think & link' – task design and learner activities 140	

Table 6.2 User experience redesign in select screens .. 148	

Table 6.3 Sample of CASA prompts in each phase of ‘think & link’ 152	

Table 7. 1 Design problems for pre and post-test .. 157	

Table 7.2 Mapping data source, RQ and study 4 and 5 ... 161	

Table 7.3 Criteria to evaluation the design artifacts of SCD 162	

Table 7.4 Snapshot of participant responses and their corresponding codes/themes 165	

Table 7.5 Most frequent sub sequences in phase1 ... 180	

Table 7.6 Comparison of participants' semantic interpretation of FBS conceptual
model .. 181	

Table 7.7 Most frequent sub sequences in phase 2 .. 183	

Table 7.8 Comparison of sub sequences based on post-test performance 184	

Table 7.9 Most frequent sub sequences in phase 3 .. 186	

Table 7.10 Comparison of subsequence in phase 3 based on post-test performance 187	

Table 7.11 Comparison of participants’ actions and sequences in ‘think & link’ 190	

Table 9.1 Summary of findings ... 201	

Table 9.2 Claims and evidence .. 205	

Table 10.1 Thesis contributions and implications ... 212	

	

18

Abbreviations

SCD Software Conceptual Design

FBS Function-Behaviour-Structure

UML Unified Modeling Language

TEL Technology Enhanced Learning

TELE Technology Enhanced Learning Environment

DBR Design Based Research

RQ Research Question

DQ Design Question

LQ Literature Question

UI User Interface

19

Chapter 1

Introduction

1.1 Background and Motivation

One of the fundamental activities of engineering is design. Engineering graduates are

expected to design solutions to solve real world problems. Design is central to

engineering as a practice. According to IEE90 (IEEE. IEEE Standard Glossary of

Software Engineering Terminology. IEE Std 610.12-1990, IEEE, 1990),

“Design is both the process of defining the architecture, components, interfaces, and

other characteristics of a system or component and the result of that process.”

Among the various phases in design, conceptual design is one of the initial

phases. In engineering, conceptual design is defined as a phase in which – “The

functional requirements are elicited and schematic descriptions of solution are

generated” (Chakravarti & Bligh, 2001). Conceptual design is considered to be

inherently hard and needs to be supported (Chakravarti & Bligh, 2001).

In, software engineering discipline design is considered as a pivotal activity

(Pressman, 2005). Although there are many similarities with other design disciplines,

the end product of design, software is abstract. This adds to the challenges to the

activities and processes of design. Software conceptual design characteristics

include “description must be implementation- independent; it should be easy to

understand; it should be precise enough to support objective analysis; and it should

be lightweight, presenting little inertia to the exploration of different points in the

design space” (Jackson, 2013). It is a standard practice to create various

representations of unified modeling language (UML) to represent a software

conceptual design (Krutchen, 2005).

Professional software designers use various design strategies such as mixed

breadth-depth approach (Ball et al., 2010) and cognitive processes like inductive

reasoning (Tang et al., 2010). Experts use domain-specific knowledge as well as

cognitive and metacognitive skills to solve complex and ill structured software design

problems (Sonnentag et al., 2006) (Ball et al., 1997). In science and engineering

(NGSS) often the term disciplinary practices is utilized to represent the expert

20

processes (National Research Council, 2012). The disciplinary practices in software

conceptual design (SCD) evident from expert literature involves problem

understanding and generating integrated solutions fulfilling all requirements (Ball et

al. 2010). Problem understanding refers to the activities such as requirements analysis,

defining goals, constraints, and stakeholders. By doing so, the experts extract the

functionalities of the software. At the same time they also create integrated models of

different views of solution in their mind (Petre, 2009; Hungerford et al., 2004). They

are able to integrate the different UML representations. However novice studies in

software design indicate, “majority of graduating students cannot design a software

system” (Eckerdal et al., 2006).

In a software engineering course, students learn about syntax, semantics and

processes to create the formal (UML) representations. However when students

encounter open-ended real world problems they are unable (Eckerdal et al., 2006) to

utilize the formal representations. So what are the novices design strategies and

cognitive processes while doing SCD? How to foster disciplinary practices of

integrated solution generation for SCD to undergraduate computer engineering

students?

These questions are the motivation of this thesis:

To develop understanding of novice difficulties while creating SCD, and foster

disciplinary practices of SCD.

1.2 Research Goal

Further in Software Engineering Body of Knowledge (SWEBOK), software design

(Tremblay, 2001) is:

“Viewed as a process, software design is the activity, within the software development

life cycle, where software requirements are analysed in order to produce a

description of the internal structure and organization of the system that will serve as

the basis for its construction.”

Based on the definitions from design and specifically software design

literature definitions, we have synthesized our definition as SCD being the process of

analysing the requirements, and creating solution descriptions as representations that

fulfil all the requirements. The outcome of SCD is multiple integrated representations

21

describing different aspects of the solution software. This description needs to aid

implementation of the software.

Traditional teaching and learning of UML design is based on a combination of

lectures for syntax/semantics and modeling tools (Akayama et al., 2013). However the

current teaching and learning methods are unable to address the problems in students

such as, inability to create basic UML representations for real world problems.

Additionally, the underlying reasons for students unable to create SCD for real world

problems is not well understood. We did not find literature relating to design

processes and cognitive mechanisms of undergraduate engineering students with

respect to SCD. An understanding of the underlying reasons is necessary to support

the doing and learning of SCD.

The broad research problem guiding this thesis is -

Developing understanding of novice processes in software conceptual design and

using the understanding to design a technology enhanced learning environment

to support novices learning of SCD.

1.3 Solution Overview

1.3.1 Theoretical Basis

This work aims at supporting the teaching and learning of novices in creation of

integrated software conceptual design. The theoretical foundation of the intervention

is function-behaviour-structure (FBS) design framework (Gero & Kannengiesser,

2014). The FBS framework (Gero & Kannengieser, 2014) models designing in terms

of three design elements: function (F), behaviour (B) and structure (S). Functions,

describe what the design is for; behaviours, describe what it does; and structures,

describe what it is. For example in a mood detection based music player, the

functionality of mood detection using facial features corresponds to function (F).

Emospark web camera, which detects mood based on facial features, corresponds to

the structure (S). Extraction of facial features by the web-cam to detect and determine

the user's mood corresponds to the behaviour (B). Along with FBS elements the

framework has 2 sets of behaviours, expected behaviour (Be) and behaviour derived

from structure (Bs). These elements are connected to each other by a set of

transformation processes as depicted in Figure 1.1. Figure 1.1 also consists of

22

examples for each of the FBS design elements for the design problem of mood based

music player. The set of processes as labelled include – (1) formulation which

transforms functions to expected behaviours, (2) synthesis which maps expected

behaviour to the structure, (3) analysis of structures which leads to generation of

behaviours of structures, (4) evaluation of expected behaviour and behaviours

extracted from structures, (5) documentation which contains the formal design

description. There are three types of reformulation – (6) reformulation of structures,

(7) reformulation of expected behaviour and (8) reformulation of functions, which are

done to evolve the problem and solution together.

Figure 1.1 FBS design framework with examples from the design problem of 'mood

based music player'

1.3.2 Solution Process

As described in the previous section the research goal is to develop understanding of

novice processes in software conceptual design and design a technology enhanced

learning environment to support integrated solution building for SCD. To achieve this

we employed design-based research (Barab, 2014). The goal of DBR (sometimes also

referred to as design experiments) is to use the close study of learning as it unfolds

within a naturalistic context that contains theoretically inspired innovations, usually

23

that have passed through multiple iterations, to then develop new theories, artifacts,

and practices that can be generalized to other schools and classrooms (Barab, 2014).

The goal of DBR aligns with our research goals, as we want to examine novices’

process of creating SCD and design /develop learning interventions to support SCD.

We followed a design-based research (DBR) methodology (Barab, 2014). To

address the research goals we conducted two iterations of DBR. Our first goal was to

unpack novice design strategies and cognitive processes. To identify these, we

conducted an exploratory qualitative study (study 1) where novices were required to

create conceptual design for a software design problem. The design artifacts and

process of design were collated. We used the function-behaviour-structure (FBS) and

conceptual design cognition lenses to analyse the design process and cognitive

processes respectively. We found that novices were unsuccessful in creating SCD

when they fixate to either one or all FBS elements initially. This prompted us to create

teaching-learning interventions based on the FBS design framework. The FBS

framework manifests as an FBS graph in our learning intervention. Example of a FBS

graph for the ‘mood based music player’ is provided in Figure 1.2. The FBS graph in

Figure 1.2 is made up of F/B/S elements as nodes and the connections between the

F/B/S elements are established using the links. The FBS graph as a representation

allows for creation/traversal from top-down or bottom up and connections made

between any pair of dyads. CS undergraduate learners already are familiar with

graphs as representation.

24

Figure 1.2 Sample function-behaviour-structure (FBS) graph for the design problem

‘mood based music player’

In DBR cycle 1, we created preliminary interventions with the FBS graph.

Study 2 and 3 were conducted as qualitative laboratory studies to unpack the novices’

difficulties while learning using FBS based intervention. Insights from these studies

helped us in identifying the features and supports that are required in FBS graph based

intervention.

In DBR cycle 2, we revised our designs to come up with ‘think & link’. ‘think

& link’ is a web-based, self-learning FBS based learning environment. Workshops for

SCD using ‘think & link’ were conducted in nearby engineering institutes (study 4 &

5) with undergraduate computer and information technology students. Both these

studies had the research design of single-group pre-post. We examined participants'

pre-post conceptual design using criteria for software design from literature (Eckerdal

et al., 2006). We additionally collated and analysed pre-post open-ended answers to

capture their perceptions about software conceptual design. ‘think & link’ records the

participants’ actions in the learning environment. We analysed these action logs to

identify action sequences, which indicate the participants’ usage of affordances in the

learning environment.

25

1.3.2 ‘think & link’ Pedagogy

Software design is a complex activity and highly ill-structured. Software designers are

required to design solutions for a wide range of problems in diverse domains. The

development environment is also highly dynamic and complex as requirements and

technologies keep on changing. Rittel and Webber (Rittel & Webber, 1973) suggest

that design has characteristics of ‘wicked problem’, which is that they do not have a

well-defined set of potential solutions.

Teaching-learning efforts in software design need to be directed towards

students being able to perform ill-structured tasks. Since designing a software system

is an ill-structured problem, it requires additional knowledge and strategies apart from

basic content knowledge. Students need to know how to apply relevant domain

specific knowledge in the problem context in order to come up with effective software

design solutions.

Essential characteristics of expertise in software design often include problem

comprehension, planning, use of visualizations, and knowledge of strategies

(Sonnentag, 1998). Literature suggests visualizations are a helpful cognitive tool in

the solution development process (Sonnentag, 1998). Design involves a combination

of complex cognitive processes as well as metacognitive strategies. While creating

software design, experts are known to utilize the strategy of mixed breadth-depth

(Ball et al., 2010). Professional software designers co-evolve the problem and solution

implicitly during a design session (Tang et al., 2010).

UML diagrams are created during the SCD task. Each representation in UML

corresponds to a view of the solution (Niepostyn & Bluemke, 2012). Experts have the

ability to build integrated models of different views of solution in their mind (Petre,

2009; Hungerford et al., 2004). They are able to integrate the different

representations. The integrated model building by combining the various

representations can be referred to as disciplinary practice.

The FBS based pedagogy requires a representation through which learners can

symbolize function, structure, behaviour and establish the relationship between them.

The FBS framework manifests as a FBS graph in the intervention. The pedagogy

includes creation and manipulation of a FBS graph for a given design problem.

Among the various representations, graph was chosen as it allows for – i)

creation/traversal from top-down to bottom up and ii) connections to be made

between any pair of dyads. As the learners create the nodes and link the dyads the

26

appropriate design processes (see Figure 1.1) are triggered. In the intervention

learners are provided scaffolds to create, modify and evaluate FBS graph. By creating

an integrated representation of the FBS graph, learners would be able to create

integrated solution designs.

The expert practices with respect to design strategies and integrated model

building is incorporated in our pedagogy by using the FBS graph. From our studies

(1, 2, & 3) we have identified difficulties of novices in SCD as well as FBS based

intervention. These findings inform the design of task structure as well as scaffolds.

‘think & link’ (https://thinknlink.tech/) is a web-based self-learning

environment for teaching - learning of software conceptual design based on FBS

framework. In ‘think & link’ the FBS graph, is a visualization tool for learners to

interact, create and evaluate the software conceptual design of problems. In ‘think &

link’ we support novices towards building the integrated models of the conceptual

design via the FBS graph.

‘think & link’ consists of learning tasks in three phases. In the first phase

learners are provided a design problem context, a corresponding FBS graph and a

series of questions. The learners are required to answer the questions by interacting

with the FBS graph and build their conceptual understanding of FBS. In the second

phase, learners edit the FBS graph to create their own version of the design solution.

They are also required to evaluate the resulting FBS graph based on predetermined

criteria of software conceptual design. The learners critique the example FBS graph

and use it as the basis for incorporating their own ideas of design. In the last phase,

learners create a FBS graph for a new problem context set by them. The tasks in each

phase are interspersed with planning, evaluation and reflection tasks. The Figure 1.3

captures each of the phases along with the learning objective in each phase.

27

Figure 1.3 Learner activities and tasks in 'think & link'

1.4 Research Questions

Each iteration of DBR starts with requirements, on the basis of which design of an

intervention is created. The intervention is then implemented in a learning setting, and

data collected to evaluate the intervention. The data collected are then analysed which

provide insights about the implementation of the intervention. The findings from the

analysis form the basis of requirements for the next iteration of DBR. In this thesis we

conducted two iterations of DBR as in Figure below.

28

Figure 1.4 Design based research cycles in this thesis

The first iteration starts with the research goal of unpacking novices’ design

strategies and cognitive processes (Study 1). This led to the design of FBS based

learning designs, which were then evaluated using laboratory studies (Study 2 & 3).

The goal of these studies was to unpack novices’ difficulties while learning using FBS

based interventions. The findings of these studies were passed on to the next phase. In

iteration 2 of DBR we designed and developed the intervention ‘think & link’. This

web-based learning environment was taken to novice undergraduate students as SCD

workshops (Study 4 & 5). The goal of these studies was to identify the changes in

novice understanding as well as design processes after using ‘think & link’.

DBR 1- Problem Analysis: Understanding novice design strategies and cognitive

processes

1. Study 1: Broad RQ - How do novices create software conceptual design?

a. What are the design strategies that novices follow while creating a

software conceptual design?

b. What cognitive processes do novices use while creating software

conceptual design?

We studied the novice processes using protocol analysis (Gero et al., 2011).

The data was analysed using linkography (Kan & Gero, 2017) and deductive coding

(Hyde, 2000) based on cognitive processes of conceptual design (Hay et al., 2017).

The findings from study 1 helped us understand the novice design processes and

29

difficulties. The findings motivated us to create intervention based on the FBS

framework to alleviate the difficulties.

DBR 1- Design and Evaluation: Initial solution designs and evaluation

2. Study 2 & 3: Broad RQ - How to support novices’ while learning SCD in

FBS based intervention?

a. After interacting with the FBS based learning intervention, what are the kinds

of FBS graphs that learners create?

b. What difficulties do learners’ experience while using FBS based learning

designs for SCD?

In this cycle we built preliminary interventions using the FBS design

framework. We studied the effect as well as difficulties of novices while using the

preliminary interventions in laboratory studies. The FBS graph artifacts were

evaluated using the adapted rubric of Lindland et al. (1994). The novice difficulties

were extracted from inductive thematic analysis (Braun & Clarke, 2017). The

findings from this cycle were used in the design of the tasks and activities in the FBS

graph based intervention. These findings also helped us design features in the learning

environment.

DBR 2 – Design and Evaluation of ‘think & link’

3. Study 4 & 5: Broad RQ - What are the changes in novices’ after using ‘think

& link’?

a. After interacting with ‘think & link’ what are the categories of SCD that

learners’ create?

b. After interacting with ‘think & link’, what are the changes in learners’

understanding of SCD?

c. After interacting with ‘think & link’, what changes in the process of creating

SCD do the learners’ perceive?

d. How do the learners’ use the features in ‘think & link’?

In this cycle, the findings from the previous cycle were utilized to create a

FBS design framework based learning environment, ‘think & link’. ‘think & link’ is a

self-learning web page, which consists of learner tasks, and activities to edit, create

and evaluate FBS graph. In order to evaluate ‘think & link’ we conducted workshops

at several engineering institutes where the undergraduate computer and information

technology students participated in the study and used the learning environment. The

research design was a single group pre-post test. We captured participants’

30

understanding of SCD pre-post via open-ended questionnaires. We also recorded

retrospective interviews and focus group interviews of participants during and after

the workshop. ‘think & link’ also logged the participants’ actions in the learning

environment. The pre-post design solutions were evaluated using criteria for software

design (Eckerdal et al., 2006). The responses to open ended questionnaires and

interviews were analysed by inductive thematic analysis (Braun & Clarke, 2017). We

employed sequence mining to extract the sequence in which participants completed

the task in ‘think & link’.

1.4 Scope of thesis

Studies about design processes and teaching-learning interventions are intertwined

with the context in which they take place. In this section the various aspects of

the context in this thesis are described, starting with the design problems, participants,

learning conditions and technology.

1.4.1 Design Problems

The four design problems in the Table 1.1 are the ones that have been used in this

thesis. The four design problems have been chosen based on the familiarity of

software systems usage among the students. For example the systems such as ATM,

payment authentication is familiar to participants as they encounter such systems in

their day-to-day lives. These four problems were selected, as the students would be

familiar in terms of usage, at least partially, to the software systems. In these

problems the functional specifications are open-ended, and a part of the problem

(ATM, payment systems, recommender system, music player) gives indication for the

functional decomposition. The indications for functional decomposition make the

design problem tractable for novices. Open-ended in this thesis means that no

requirements were provided to the students. Students had to assume the requirements

from the problem and solve the problem.

As we have different design problems that the students worked on, it is

important to establish similarity among the problems so that we can evaluate the SCD

and compare the design strategy among the participants. However, the problems were

given to an expert software designer, who is an instructor as well. According to the

expert, the problems are equally matched in terms of complexity, time taken to solve,

and amount of code that needs to be written. They are in between the innovative and

creative design problem category (Brown & Chandrasekaran, 2014).

31

Table 1.1 Software design problems used in this thesis

Sno # Design Problems Study 1 Study 2 Study 3 Study 4

1 Design a fingerprint ATM

system

✓ ✓ ✓ ✓

2 Design a mood based

automatic music player
✓ ✓ ✓ ✓

3 Design a fingerprint based

payment system
✓ - - -

4 Design a cooking recipe

recommender system
✓ - - -

1.4.2 Participants

Participants, learners, and novices are interchangeably used in the thesis. The typical

representation characteristics of the novices’ are that they are computer or information

technology engineering students from any Indian engineering institute. Students in

their third year and above would have the appropriate domain knowledge and

exposure. This criterion was chosen as such students were exposed to courses such as

‘Structured Object Oriented Analysis and Design’ (semester 5) and ‘Software

Engineering’ (semester 6) as a part of their engineering curriculum. These two

courses cover topics of software design approaches, software-modeling tools,

characteristics of software solution etc. As the course contents included such

concepts, it was appropriate to consider that they had prerequisite knowledge for the

activity. However second year students can also participate, provided they are

exposed to UML modeling concepts and tools. All participants volunteered for the

research study. Informed consent from all participants was obtained before the

beginning of studies. No participation fee was provided, however, certificates were

provided for all participating students. The objective was to obtain a typical

representation of learners from the age group (19-22) with appropriate domain

exposure. The participants are representative of Indian urban engineering students,

proficient in English as a medium of instruction and communication.

32

1.4.3 Learning conditions

The interventions for teaching-learning SCD is designed for self-learning. It is

intended as a supplementary learning activity for the course software engineering. As

the course commences, ‘think & link’ activities can be performed during laboratory

hours. For final year engineering students, ‘think & link’ can be part of their final year

project activities.

1.4.4 Technology

‘think & link’ is developed in HTML-CSS, Javascript, and PHP with backend in

MySQL. It is currently designed for desktop and laptop users. Users would require

internet access to use the learning environment.

1.5 Contributions

With the context as described in section 1.4, we conducted the research studies 1 to 5.

The overarching research goals of this thesis are to develop understanding of the

novice design process and support the learning of SCD. In this section we highlight

the contributions of this thesis

● Theoretical understanding of novice difficulties - Towards the theory of novice

software design practices, for the researchers in computing education research,

learning scientists and design education this thesis identifies-

1. novice design strategies and cognitive processes in SCD

2. novice difficulties while learning from FBS graph based intervention.

3. the scaffolds required for novices to perform SCD.

● Pedagogy - Towards the pedagogy and learning design for software conceptual

design, for the instructional designers and software engineering educators this

thesis presents-

1. pedagogical design of a FBS based learning environment for teaching and

learning of software conceptual design

2. a set of features and scaffolds for novices teaching-learning of FBS based

software conceptual design

● Learning environment development - For software engineering students and

software engineering educators we have the web-based learning environment

‘think & link’. ‘think & link’ is an instantiation of the FBS based pedagogy. It

helps learners to create integrated multiple representations by thinking in terms of

FBS for a given design problem context. We have provided a teacher-authoring

33

tool for different FBS graph contexts. ‘think & link’ is available online in this link

- https://thinknlink.tech/ . To access ‘think & link’ student interface create a login

id or use this credential: user id – Prathiksha, password –seokjin. To access the

teacher interface use this credential: user id – etiitb, password – thinknlink2019.

1.6 Structure of Thesis

The Figure 1.5 below summarises the chapters and their structure in this thesis. In this

chapter, we presented our primary research objective, motivation, broad research

questions and scope of work. The second chapter presents an overview of the related

work and background literature. In the third chapter we present the overall research

methodology and the research questions roadmap. In the chapters 4, 5, 6 and 7 we

present the details of research studies with their corresponding results and findings.

Chapter 8 we discuss the results from the lens of conceptual change. Chapter

9 provides the summary of the findings and discusses them with respect to the

research goals. Chapter 10 summarizes the contribution of this thesis along with

future work.

Figure 1.5 Chapters in this thesis

34

Chapter 2

Review of Literature

2.1 Organization of Literature Review

In this chapter we review the literature related to software conceptual design. To

understand about software conceptual design, we have referred to the literature in

design, engineering design and software design. The Figure 2.1 captures the parent

disciplines in this thesis.

Figure 2.1 Parent disciplines in this thesis

The design literature helps us scope the definition of conceptual design, providing

us with gainful insights on cognitive processes involved in conceptual design (Hay et

al., 2017) and the various frameworks involved in the conceptual design. This

corresponds to section 2.2, 2.3 and 2.6. The software design literature provides us

with insights on the quality parameters of SCD, expert design strategies in SCD,

teaching and learning of SCD and novice difficulties reported in SCD. They

correspond to section 2.2, 2.3, 2.4, and 2.5. The details about how each parent

discipline contributes to the sections in this chapter are presented in Figure 2.2.

35

Figure 2.2 Organization of literature review

2.2 What is software conceptual design?

Conceptual design is defined as a phase in which – “The functional requirements are

elicited and schematic descriptions of solution are generated” (Chakrabarti & Bligh,

2001). Software conceptual design (Jackson, 2013) has the following characteristics:

− description which is implementation independent

− support analysis

− support exploration of design spaces

Conceptual design is defined in many domains as captured in the Table 2.1

below:

36

Table 2.1 Definition of conceptual design in various domains

Sno Domain Definition

1 Engineering
Design

Conceptual design commences with high-level
description of requirements and proceeds with a high
level description of solution (Mc Niell et al., 1998)

Conceptual design is a phase in the process of designing,
when solution principles are developed to meet the
desired functions (Pahl & Beitz, 2013)

Conceptual design is a creative process (Jill & Benami,
2010)

2 Product Design

In this part of the design process, designers try to
understand the underlying design problem and then
generate some initial solutions. Conceptual design can
also be a very confusing process since there is little
concrete information available to designers. (Masur &
Salustri, 2007)

Relatively ambiguous stages of the design process known
as conceptual design (Hay et al., 2017)

How functional requirements of a design problem are
transformed into schematic descriptions of design
solution concepts (Chakrabarti & Bligh, 2001)

3 Software
Engineering

It is a description must be implementation-independent;
it should be easy to understand; it should be precise
enough to support objective analysis; and it should be
lightweight, presenting little inertia to the exploration of
different points in the design space. (Jackson, 2013)

37

From the Table 2.1, we have synthesized the definition as - A conceptual

design conveys the functionality and working of the system. There are various quality

parameters (Lindland et al., 1994) of conceptual design such as complete, consistent,

formal, modifiable, testable, traceable, and understandable. Lindland et al. (1994)

compiled these properties from existing frameworks in engineering terminology. The

parameter complete refers to ‘everything that the software is supposed to do is

included in the solution.’ Consistency refers to the degree of consonance in the

solution details. Formal parameter refers to the degree of domain specific formal

language used in the solution description. Modifiable refers to the degree to which

changes can be made to the solution description such that the completeness and

consistency properties of the solution are not hampered. Traceable and testable refer

to the ease of referencing requirements and verifying solution design. The parameter

understandable refers to comprehension of the solution by non-computer specialists.

Conceptual design is a critical step in design (Pahl & Beitz, 2013) and an

important phase (Dym et al., 2005; Chakrabarti & Bligh, 2001). Around 60% of the

total product cost is fixed at the conceptual design phase (Trends in Concept Design,

2011). This phase is important as: i) the problem as well as the solution domain co-

evolve in this phase (Suwa et al., 2000), ii) problem scoping happens at this phase

(Jiang & Yen, 2013), iii) different phases of the design process are highly

interconnected, as it is the first phase the results of conceptual design affect all the

remaining phases (Pahl & Beitz, 2013). Peculiar characteristics of software design,

such as dynamicity and intangibility makes this activity more challenging. Conceptual

design is inherently hard and needs to be supported (Chakrabarti & Bligh, 2001).

Considering the conceptual design as software product, we could follow the

ISO 9126 standard “Software Product Evaluation-Quality Characteristics and

guidelines for their use” and its characteristics functionality, efficiency,

maintainability, portability, usability and reliability and all their sub characteristics

(ISO 2001). However software conceptual design is not a complete software product

as the problem and solution are still evolving at this stage. If we consider a conceptual

model as a software requirement specification (SRS), we could apply the quality

properties defined by Davis et al. (Davis et al., 1993) or the International Standard

ISO 830 (IEEE, 1998). Davis et al., (Davis et al., 1993) has defined 24 qualities that

SRSs should exhibit (see Table 2.2). From the Table we see that the parameters in

38

SRS overlap with the parameters discussed above in conceptual design by Lindland et

al (1994). The SRS adds the parameters persistent storage, annotation and reusability.

Table 2.2 Software Requirement Specification (SRS) document quality parameters

(Davis et al., 1993)

1. Unambiguous 13. Electronically stored

2. Complete 14. Executable/Interpretable

3. Correct 15. Annotated by relative importance

4. Understandable 16. Annotated by relative stability

5. Verifiable 17. Annotated by version

6. Internally consistent 18. Not redundant

7. Externally consistent 19. At right level of detail

8. Achievable 20. Precise

9. Concise 21. Reusable

10. Design independent 22. Traced

11. Traceable 23. Organized

12. Modifiable 24. Cross-referenced

In the domain of software, there are many other proposals for measuring

quality in conceptual designs although from different views of software conceptual

design. They are presented in Table 2.3.

Table 2.3 Quality parameters in SCD

Literature Qualities View of SCD

Moody and Shanks (Mood

& Shanks, 1994) and

Moody et al. (Moody et

al., 1998)

completeness, integrity,

flexibility, understand

ability, correctness,

simplicity, integration, and

implement ability

Data Model (Database

design, ER models)

Olivé, A. (Olive, 2000)

Completeness, correctness,

principle of

conceptualization (design

independent conceptual

schema), syntactically

Conceptual Modeling of

Information Systems

39

valid, simplicity, ease of

understanding, and

stability (flexibility,

extensibility,

modifiability)

 However, many of the quality parameters presented in the above Table 2.3

cannot be adopted, as software conceptual design is not a complete product. At this

stage the problem and the solution are co-evolving. However, the goals of the

problem, which are the requirements, need to be fulfilled by conceptual design. At the

same time, the means by which the goals are fulfilled need to be logically coherent.

 A functional requirement specifies a function that a system or system

component (i.e., software) must be capable of performing (Brackett, 1990). They can

be stated from a static and dynamic perspective. Static perspective describes the

functions performed by each component, whereas dynamic perspective describes the

internal working of the system. This corresponds to ‘complete’ in the Lindland et al

(1994) framework. The SCD solution description needs to include all the details that

address both the static and dynamic functional requirements.

 In the solution, there are various components that address different functional

requirements. The components need to be compatible, so that the solution is well

integrated. This corresponds to consistency in the Lindland et al (1994) framework.

 So the parameters that are considered for quality of SCD are – (i) fulfils

functional requirements, (ii) logically cohesive solution parts. These are the two

parameters that we have scoped in this thesis for SCD. In the next section we discuss

the SCD practices of experts reported in the software design literature.

2.3 What are the design strategies and cognitive processes involved in SCD?

Ball et al (Ball et al., 2010) report that several research studies document: i) the

characteristics of experts in various design domains and ii) the multiple approaches

followed to study expertise in design. As software design experience can be

application domain dependent, it is different from other engineering design disciplines

where the context of the domain is relatively constant (Tang et al., 2010). For

instance, the issues faced by software designers working in the scientific domain are

quite different to those working in the transactional financial system domain. Expert

40

software designers need to learn the domain and create software that addresses the

problem. So, software designers have abilities that are domain specific at the same

time general problem solving abilities.

 Cognitive processes refer to the internal mechanisms or processes that

transform or operate on mental representations (Hay et al., 2017). Mental

representations refer to concepts or mental entities that stand in relation to physical

entities. On the other hand the term strategy in oxford dictionary indicates ‘a plan that

is intended to achieve a particular purpose’. A design strategy describes the general

plan of action and the sequence of particular activities i.e. tactics, design methods to

arrive at a design (Gero & Kannengiesser, 2014). A design strategy needs to provide

a framework for intended actions to operate and control to adapt the actions according

to the responses (Gero & Kannengiesser, 2014). Research in cognitive processes of

experts is also undertaken to understand the role of cognitive processes in design

(Suwa et al., 2000). The research studies conducted however varied in the way design

itself is looked at – linear search process or iterative exploratory process. The shared

ontology by Hay et al (Hay et al., 2017) provides a generic classification of cognitive

processes involved in conceptual design.

Expert heuristics have underlying cognitive processes, which have become

implicit to them. Expert designers first approach a software design problem by

coming up with an intermediate solution containing a breadth of features addressing

several requirements. The designers then focus on realizing each feature in the

intermediate solution. While doing so they seem to shift towards the depth of each

feature. Overall findings report a use of mixed breadth -first and depth-first solution

development with switch to depth-first strategically (Ball et al., 2010). It is considered

that professional software designers co-evolve the problem and solution implicitly

during a design session (Tang et al., 2010). Studies also point out that reasoning

techniques, such as appropriate contextualization of design problems, explicit

communication of design reasoning, explicit design reasoning and the use of inductive

reasoning contribute to the effectiveness of software design (Tang et al., 2010). Tang

et al. (2010) describe ‘design reasoning’ as the ability to fulfil the requirements at the

same time be cognizant about the consistency of the whole solution. Tang et al.

(2010) refer to many inductive reasoning techniques that software designers’ use such

as analogical reasoning, scenario-based reasoning to name a few.

41

In engineering education literature, there are many studies that examine the

novice-expert engineering design differences. Jonnasen (Jonassen, 2000) points out

that solving a design problem requires designers to structure the problem. The experts

spend a considerable time in problem analysis and structuring the problem rather than

jumping to the solution. There have been various studies on how designers’ design

and reports of expert –novice (E, N) or senior-junior (S, J) study in design. Many of

them report differences in the design processes between the groups. The Table 2.4

collates the various studies and the findings thereof. In Table 2.4 the first column lists

the design process that the studies have focussed on. The last column indicates the

difference in the amount of time spent between the cohorts. From the Table (2.4) we

see that experts spend more time than novices in problem analysis, design iterations,

solution evaluation and regulation of cognition.

Table 2.4 Collating the various study findings from expert-novice (E, N) and senior-

junior (S, J) in design

Design Process Study

Difference

Group

Time spent in

design

process

Problem Analysis (Mathias, 1995) Expert (E)-Novice (N) N<E

Information Gathering (Cross et al.,

1994)

Senior (S) – Junior (J) J < S

Design Iterations

(composition and

construction)

(Seitamaa-

Hakkarainen &

Hakkarainen,

2001)

Expert (E)-Novice (N) N<E

Regulation of

Cognition

(Kavali & Gero,

2002)

Expert (E)-Novice (N) N did not

exhibit

42

Solution Evaluation (Ahmed et al.,

2003)

Expert (E)-Novice (N) N<E

Problem Scoping and

Alternate Solutions

Development

(Atman et al.,

2005)

Senior (S) – Junior (J) J<S

2.4 How does teaching and learning of SCD happen?

Literature points to two approaches in teaching and learning of software engineering

design – (i) pedagogical and (ii) tool based.

(i) Pedagogical approaches: Some of the teaching and learning approaches in software

design are project based learning (Teel et al., 2012), game development, problem

based learning (Schlling & Sebern, 2013; Abelson & Greenspun, 2001; Shin et al.,

2014), simulation based approach (Oh, 2002), and collaborative games (Monslave et

al., 2014). The pedagogical approach can be broadly categorised into three- realism,

topical, and simulation (Ellis, 2008).

The realism approach focuses on giving real world context for the students

while learning software engineering. It includes industry participation (Beckman et

al., 1997; Wohlin & Regnell, 1999; Kornecki et al., 2003), emphasizing non-technical

skills such as marketing, project management (Gnatz et al., 2003; Goold & Horan,

2002), and teamwork (Navarro & Van Der Hoek, 2005).

Topical approaches aim to educate students in detail about a topic generally

not covered in depth in mainstream textbooks and lectures. These approaches do not

focus on specific delivery methods, but instead focus on the mere addition of the topic

as a crucial component of an effective and complete education in software

engineering. Some examples of such topics are formal methods (Abernathy et al.,

2000), real-time software engineering (Kornecki, 2000), and specific software

processes such as the rational unified process (Halling et al., 2002).

Finally, simulation approaches are those that have students practice software

engineering processes in a (usually) computer-based simulated environment. Within

the realm of software engineering simulations, there are three main types: industrial

simulations brought to the classroom (Collofello, 2000; Pfahl et al., 2001), game-

based simulations (Drappa & Ludewig, 2000; Navarro & Van Der Hoek, 2005), and

group process simulations (Nulden & Scheepers, 2000; Stevens, 1989). The

43

simulation approaches add realism to the learning environment in different ways.

Industrial simulations add real project data in the simulation model; game-based

simulation adds realistic game scenarios; group process simulation adds characters

that behave like real-world participants.

The ‘learning context’ is the focus of the pedagogical approach. Each of the

above approaches the learner is either placed in a real-life context, or real-life like

context. Additionally newer practices of the software engineering domain are

presented as topics to the learner thereby enriching the context. There is a lack of

learner as the focus in the pedagogic approaches discussed above. The next approach

we discuss is the tool-based approach.

(ii) Tool- based approaches: In the engineering domain, for conceptual design there

exists various tools and formal notations such as Causal Functional Representational

Language (Iwasaki et al., 1993), Kritik (Bhatt et al., 1994), Schemebuilder (Bracewell

& Sharpe, 1996), FBS modeller (Umeda et al., 1996), Idea Inspire (Chakrabarti et al,

2017). The details about each of these tools are omitted, as they are not central to the

theses. However, when we examine the tools we find that they are either deeply

rooted in the domain (e.g., bond graph, case based reasoning) or have a very steep

learning curve of representation (e.g. CFRL).

In the software domain, hundreds of industry-grade software engineering tools

are introduced each year (Pressman, 2005). The most comprehensive tools packages

from software engineering environments also known as Integrated Development

environments (IDE) that integrate a collection of individual tools around a central

database (repository). The tools are focused to manage complexity, process models,

and coordinate global teams e.g. GENESIS (a generalized, open-source environment

designed to support collaborative software engineering work). The other area in which

tools for software engineering are towards specific design approaches like architecture

based design, aspect oriented software development or model driven software

development. Tools environments will respond to a growing need for communication

and collaboration and at the same time integrate domain-specific solutions that may

change the nature of current software engineering tasks.

The tools specific in the context of conceptual design for novices that alleviate

their difficulties have not been built. Similar to the pedagogical approach the tool-

based approach the tool-based approach does not place the learner at the centre.

44

Additionally, software design teaching and learning approaches has been directed

towards software engineering methodologies and processes. In the above teaching and

learning and tool based interventions most of them are targeted at requirements

analysis, project management, development & design methodology, modularity,

documentation, non-technical knowledge, and skills.

Despite the various teaching and learning efforts software design and

programming is still challenging for students. The teaching and learning efforts in

software engineering and software design need also to be directed towards students

being able to perform ill-structured tasks (Moritz et al., 2005). The teaching and

learning efforts are also not directed towards finding and alleviating learner

difficulties. However teaching and learning tools for specific novice difficulties for

software conceptual design is still not available.

2.5 What are the difficulties that novices encounter in SCD?

In this section we bring in the literature about novice design strategies and cognitive

processes in general engineering design as well as software design. From the general

engineering domain literature it is reported that novices use depth-first (Ahmed et al.,

2003; Hokanson, 2001), treat all issues in design equally (Pan et al., 2010), tend to be

data gatherers (Vishwanathan & Linsey, 2013; Jansson & Smith, 1991). Novice

designers carry out several activities that are classified as a thought or an action rather

than a design strategy (Pan et al., 2010). Novices fail to employ specific design

strategies and follow a pattern of ‘trial and error’ (Chrysikou & Weisberg, 2005). It is

reported that having no strategy could also be a random search strategy (Hokanson,

2001). Novices have been reported to have difficulty in starting the design and

generating ideas/solution concepts (Pan et al., 2010). Similar findings have been

reported where student designers reported ‘getting ideas and refining them is the

hardest part’ (Hokanson, 2001).

Design fixation is reported as a major deterrent to the idea generation activity

(Vishwanathan & Linsey, 2013). Design fixation entails the blind adherence of

designers to their initial ideas or presented examples (Jansson & Smith, 1991). Design

fixation can play a counter productive role as it limits the solution space. However as

engineering design is an open-ended and ill-structured problem, it requires the

creation and evaluation of multiple designs. Design fixation in novices may occur due

to incomplete mental models (Vishwanathan & Linsey, 2013). Incomplete mental

45

models refer to the expertise in a particular design context. Novices tend to have

limited expertise and hence the incomplete mental models. The other fixation that

occurs with novices is to constrain their ideas to variations of their initial concepts

(Kiriyama & Yamamoto, 1998). Literature also points to the difference in memory

retrieval strategy (Vishwanathan & Linsey, 2013) between experts and novices. It is

said that experts perform better memory retrieval, as they tend to analyse the problem,

employ cognitive processes and create representations for solving the design problem.

To understand design fixation among novices the actions, strategies and processes that

novices follow needs to be studied meticulously.

In the context of software design, the ‘‘Scaffolding’’ experiment, a

multinational, multi-institutional project looked at the approach that undergraduate

students take to design software (Eckerdal et al., 2006). In this study, the authors had

given novice designers the task of designing a super alarm clock. The results pointed

out that ~41% designs that the novices created only added an insignificant amount of

detail as design and created unimplementable design content. The authors noted that

the novices were not able to create designs that had overview of parts and relationship

between parts. The study concluded with a broad result that graduating students

couldn’t design a software system (Eckerdal et al., 2006).

In the computer-engineering curriculum SCD is taught as courses object

oriented analysis and design, software engineering in the third year undergraduate

level. In these courses, unified modeling language (UML) notations are a standard

representation mechanism (Medvidovic et al., 2002). Students are unable to utilize the

formal representation mechanism and connect them to create a software design. In a

study conducted by Chren et al. that documented the students’ mistakes in UML

diagrams (Chren et al., 2019), it was reported that students had difficulties in

diagrams such as state machines, which required them to integrate the different views

and details across multiple diagrams.

To support novices in the modelling tasks as well as designing quality

software design it is necessary that we start by understanding novices’ design

processes. To unpack the difficulties, unearth patterns in their actions and the

associated cognitive processes, it is necessary to study novices’ SCD task. A study of

this nature would help us identify (i) learner’s prior knowledge and experience, (ii)

intuition and sense making resources, which can be recruited, in formal education

(Levy & Wilensky, 2008) (iii) skills or competencies that need further development.

46

Literature suggests that learning is more likely to lead to a change in practice if a

needs assessment has been conducted (Marshall & Pennington, 2009). So, novice

design studies need to be more focused in understanding their design approach,

difficulties and pedagogical needs. This leads to the next question on what theoretical

framework and support we need to examine novices’ SCD. This question we attempt

to answer in the next section.

2.6 What are the theoretical frameworks to examine and guide SCD?

From the SCD definition in section 2.2, we see that doing design often involves

formulating the problem, analysing requirements, making decisions that impact the

solution design. In this thesis we have the dual goals of understanding how novices

create SCD and supporting their process to help them create integrated SCD.

 The way we view design itself would affect the process we choose to study

novice’s design processes and support them. “We consider design to be creation and

manipulation of representations with available external tools to fulfil the set of

requirements with the provided criteria.” This view aligns with the distributed

cognition theory (Hutchins & Klausen, 1996). The theory of distributed cognition

suggests that cognition involves the interaction with the external environment.

External representations are integral to the distributed cognition theory as they not

only offload cognition but also allow for manipulations in shared representation space

(Kirsh, 2010). Software design domain comes with its own set of formal

representation mechanisms like UML diagrams (Pressman, 2005). However, Petre

(2013) suggests that it is not quite used as a design tool in practice.

 Many of the frameworks reported in literature to study novice processes in the

context of engineering design and software designing view the design process in

terms of ill-structured problem solving steps. For example, to document engineering

student design processes, Atman and Bursic (1998) used the scheme of problem

definition; gather information, modelling, feasibility analysis, etc. In other studies by

Hughes and Parkes (2003), while examining software engineering they have grouped

the actions of designers related to the activities such as requirement analysis, design

meetings, debugging, re-engineering, maintenance and review.

 The need for a common framework, which can be utilized to study and

compare the different analyses, emerged. In the design literature the FBS design

framework (Gero & Kannengeiser, 2014), has been used in various design domains

47

including architectural, mechanical, software and business process design (Gero &

Kannengeiser, 2014a). This led us to take the FBS design framework as a lens to

study novice design processes.

 The next goal of the thesis is to support novices to create SCD. In section 2.2,

we defined SCD to utilize formal representations. It is a standard practice to create

models of solution using the unified modelling language (UML) representations

(Medvidovic et al., 2002). The representations in UML belong to a specific view. For

example the use case represents the stakeholder view, the class diagram represents the

components and the properties of them. The sequence diagram represents the

interactions between the components and their properties. The need for an integrated

representation (Niepostyn & Bluemke, 2012) was recognized. So to support novices

to create integrated SCD, we need to provide them tools to integrate the

representations.

 The different UML representations such as use-case, class, sequence diagrams

depict the functional, structural and behavioural aspects of the software solution. The

FBS design framework integrates the various representations in UML. Additionally

Galle (2009) points out that the FBS design framework can be utilized to design tools

to assist practising designers. So we propose to use the FBS design framework to

address both the goals of this thesis. Before we proceed to the solution features, we

would need to define the terms function, structure and behaviour (FBS). We use the

definition of FBS provided by Gero and Kannengeiser (2014). In the next section, we

detail the design framework elaborately.

2.7 Examining and guiding activities of SCD using FBS design framework

The FBS design framework (Gero & Kannengeiser, 2014) models designing in terms

of three design elements: function, behaviour and structure. Each of the design

elements is defined as below:

· Function is the teleology (purpose) of the design artefact (`what the artefact is for')

· Structure is defined as its components and their relationships in design (`what the

artefact consists of ').

· Behaviour is defined as the artefact's attributes that can be derived from its

structure (`what the artefact does').

48

This is based on the idea that all designs can be represented in terms of:

functions, which describe what the design is for; behaviours, which describe what it

does; and structures, which describe what it is (Gero & Kannengeiser, 2014). In this

framework the goal of designing is to transform a set of functions into a set of design

descriptions (D). The function (F) of a designed object is defined as the purpose; the

behaviour (B) of that object is either derived (Bs) or expected (Be) from the structure,

where structure (S) represents the components and their relationships. The Figure 2.3

is repeated here to represent the series of transformations between the FBS elements.

Humans construct connections between function, behaviour and structure through

experience and through the development of causal models based on interactions with

the artefact.

Figure 2.3 Function-behaviour-structure design framework with examples from the

design problem of ‘mood based music player’

A design description is never transformed directly from the function but

undergoes a series of processes among the FBS design elements. These processes

include: formulation which transform functions into a set of expected behaviours;

synthesis, wherein a structure is proposed to fulfil the expected behaviours; an

analysis of the structure produces derived behaviour; an evaluation process acts

between the expected behaviour and the behaviour derived from structure; and

49

documentation, which produces the design description. As seen in Figure 2.3, there

are three types of reformulation: reformulation of structure, reformulation of expected

behaviour and reformulation of function. The structure, behaviour and function all

are part of the reformulations. Reformulation of function changes or redefines the

design problem. The reformulation processes expand the problem space and solution

space. The Table 2.4 details some examples of function, behaviour and structure for

different design problems.

Table 2.5 Examples of elements of FBS design framework

Domain

Problem Function Structure Behaviour

Software
Design

Design a
fingerprint
ATM
system

FP scanning

• FP scanner (H/w)
• FP scanning

modules to capture
& store

• Finger

placed
• Scanner

begins
• Scan

stored

Design a
mood
based
music
player

Facial
scanning

• Camera
(hardware)

• Facial recognition
algorithm

• Database to store
facial features

• User stands

near the
camera

• Presses the
scan button

• System
records the
face

• Facial features
/ points are
extracted

• Classification
of the feature
to the mood
based on
algorithm

50

Biology
Design
artificial
lungs

Breathing

• Lungs
• Windpipe
• Diaphragm
• Nose
• Mouth

• Diaphragm

raises
• Increases

chest capacity
• Lungs expand
• Air is sucked

in through
your nose or
mouth

• Air travels
through
windpipe

• Oxygen is
extracted in
the lungs

Utility of FBS in SCD - Researchers have developed numerous process models to

understand, improve, and support the design and development process considering its

particular characteristics. However, the complexity is such that no single model can

address all the issues. Furthermore, the many models that have been developed are

diverse in focus and formulation. The FBS framework is applicable to any

engineering discipline, for reasoning about and explaining the nature and process of

design (Krutchen, 2005).

● Universal Framework - The FBS model of designing has been applied to

different contexts with different purposes. One may distinguish two main

fields of application, “as a theoretical vehicle for understanding design, and

as a conceptual basis for computerized tools intended to support practicing

designers” (Galle, 2009). This corresponds to our two research goals. So we

can utilize this framework for both our research goals.

● Supports Abstraction -Software engineers grapple with abstraction at virtually

every step in the software engineering process (Pressman, 2005). As design

commences, architectural and component-level abstractions are represented

and assessed. The FBS design framework is categorized as an abstract micro

model that can represent design as elementary abstract processes (Wynn &

51

Clarkson, 2018). Due to the abstract nature of the processes and the design

elements it has the ability to be applied to any application domain in software.

● Integrated View - Typically and most commonly used tool for used in

software design is Unified Modeling Language (UML). However most of the

designs created using UML describe systems in different notations from

different points of view and at different levels of abstraction. The need for a

unified and integrated view, which allows for evaluation of the consistency

and completeness of the design, was identified (Niepostyn & Bluemke, 2012).

The need for a unified and integrated view in software design, which satisfies

the consistency and completeness of the design solution, was identified (Niepostyn &

Bluemke, 2012). The FBS framework integrates the different representations of UML.

In the conceptual design phase the Function-Behaviour-Structure (FBS) framework

allows the designer to create/identify FBS elements and establish their relationships

from an open design problem. This framework allows effective reasoning about the

functional and causal roles played by structural elements in a system by describing a

system’s subcomponents, their purpose in the system, and the mechanisms that enable

their functions (Gero & Kannengieser, 2014). The framework allows for exploration

of problem (function) as well as solution space (structure/behaviour) during the

conceptual design task. The FBS framework captures expert-novice differences in

design, complex system understanding and may have implications for instruction

(Hmelo-Silver et al., 2000). 	 Due to these reasons, we believe that FBS is an

appropriate framework to alleviate novices’ difficulties of fixation and lack of

integration.

2.8 Chapter Summary

● Conceptual design is an important phase in engineering design as well as

software design. Around 60% of the total product cost is fixed at the conceptual

design phase. This phase is important as: i) problem scoping happens at this

phase, ii) the problem as well as the solution domain co-evolve in this phase, iii)

different phases of the design process are highly interconnected, as it is the first

phase the results of conceptual design affect all the remaining phases. Peculiar

characteristics of software design, such as dynamicity and intangibility makes this

activity more challenging. Conceptual design is inherently hard and needs to be

supported.

52

● The outcome of software conceptual design is a design solution description that is

implementation independent, supports analysis, exploration and communication.

The SCD needs to fulfil the requirement at the same time to be a logically

coherent solution. These are the quality characteristics of SCD that we focus on in

this thesis.

● Experts use domain-specific knowledge as well as cognitive and metacognitive

skills to solve complex and ill structured software design problems. Experts are

able to utilize strategies such as mixed-depth breadth approach and problem-

solution coevolution. They are also able to combine the various UML

representations to create integrated design solutions. The cognitive processes that

expert software designers’ employ are memory retrieval, problem structuring,

mental simulation, design reasoning and abstraction to name a few. All these

practices of experts constitute disciplinary practices in the domain of SCD.

● Existing teaching and learning approaches focus on the learning context or the

content of the software engineering processes and methodologies. Novices have

difficulties in creating SCD, however their nature of design processes is still

unknown. Additionally the tools are built to support practising designers but not to

alleviate novice difficulties. Existing tools do not have scaffolds to support

novices in creation of SCD and need for a teaching and learning pedagogy that

supports novices to create SCD.

● In software design usually UML is used to model the software solution design.

However UML consists of different diagrams that represent the solution in a

separate view. For example, the use-case represents the functional view of the

solution, class diagram represents the structure and sequence diagram represents

the behaviour. There is a need for a unified representation so that novices can

utilize them to understand the semantic relationship between the representations.

● The FBS design framework has been used as a basis for modelling designs and

design processes in a number of design disciplines, including engineering design,

architecture, construction and software design. It has also been used as a lens to

understand expert designers’ processes. So this framework is suitable for our two

research goals that are - understanding novices’ SCD processes and creating an

environment to support novices’ learning of SCD.

53

Chapter 3

Research Methodology
In chapter 1 we have explained our research goals; firstly, to understand the novice

design processes involved in SCD and then to support novices’ in creating software

conceptual design (SCD). In chapter 2, we have identified gaps in the literature and

chosen the function-behaviour-structure (FBS) design framework to examine as well

as scaffold the novices in creating SCD. In this chapter, we describe how we chose a

research method, to align with the research goals and the details of our research

process.

3.1 Choosing a research methodology

Our research goals can be further divided into sub-goals as below:

1. Understand the novices’ design strategies and the cognitive processes

underlying it. This will bring out the difficulties that novices’ face while

creating SCD.

2. Create a FBS design framework based pedagogy and an associated learning

environment to alleviate novice difficulties and support their SCD creation.

Evaluate the effects of novices’ learning with the FBS based environment.

The first goal that focuses on understanding novice design processes requires

us to look at the actions that novices undertake while creating SCD. This requires us

to interpret the actions in a context. From chapter 2, we have argued for the FBS

design framework as the lens to look at the novices’ actions. With this lens, we look at

the design strategies.

The second goal is to alleviate the difficulties and support novices’ creation of

SCD by designing FBS design framework based pedagogy and an associated learning

environment. We do so by systematically studying the novices’ difficulties in using

the learning environment. The insights from these studies give us the requirements for

refining the learning environment features. We also iteratively study the effects of the

learners’ outcome and understanding of SCD after they have used the learning

environment. By studying the learner difficulties and designing a learning

54

environment to address those we intend to strengthen the software engineering design

practice at the undergraduate computer engineering level.

To be able to achieve our research goals we need a research methodology that

is systematic, yet allows flexibility of methods based on the context and underlying

research question. Our goals align with the design research family of research

approaches. It is often referred to as ‘educational design research’ (Van den Akker et

al., 2006). There are many other labels with which this is referred to in literature such

as design studies, design experiments, developmental research, and engineering

research. Though the labels may differ this family of research methods have the

following characteristics (Van den Akker et al., 2006):

● aims at designing intervention to be used in the real world, so practicality

of the intervention is measured

● design of intervention is based on theory and the testing of the design

contributes to theory building

● focus is on understanding and improving interventions

● incorporates a cyclic approach of design, evaluation and revision

As we understand the characteristics, it is also important to note that the

design research methods do not emphasize on isolated variables (Van den Akker et

al., 2006). Educational design research (EDR) includes (Kopcha et al., 2015) but not

limited to design-based-research (DBR) (Barab & Squire, 2004), design and

development research (DDR) (Richey & Klien, 2014), and design-based

implementation research (DBIR) (Penuel et al., 2011).

In EDR the three phases central are: analysis and exploration, design and

construction, and evaluation and reflection (Figure 3.1 below). All the three phases

exist in the methods discussed above- DBR, DDR, and DBIR. Each of the phases

interacts with the practice, which increases as the project matures. However, the

different methods such as DBR, DDR, and DBIR have focus on specific phases. For

example, DDR focuses on “systematic study of designing, developing and evaluating

instructional programs, processes and products that must meet the criteria of internal

consistency and effectiveness” (Richey & Klien, 2014). This corresponds to the

second phase. DBIR focuses on “research on the implementation of reforms and

drives iterative improvements'' (Richey & Klien, 2014). This corresponds to the last

end of the spectrum. DBR focuses on “producing useful products (e.g., educational

materials) and accompanying insights into how these products can be used in

55

education” (Baker & Van Eerde, 2015). So, DBR lies on the left of the continuum.

Our research goals are also in the similar spectrum of EDR. As DBR aligns with the

research sub-goals that we listed in the beginning of this section we choose DBR for

this research work.

Figure 3.1 McKenney and Reeves (2012; p.159) generic model of Educational Design

Research (EDR)

3.2 Design-Based Research Iterations

Design Based Research (DBR) is defined as “a systematic but flexible methodology

aimed to improve educational practices through iterative analysis, design,

development, and implementation, based on collaboration among researchers and

practitioners in real-world settings, and leading to contextually-sensitive design

principles and theories” (Wang & Hannafin, 2005). The goal of DBR (sometimes

also referred to as design experiments) is to use the close study of learning as it

unfolds within a naturalistic context that contains theoretically inspired innovations,

usually that have passed through multiple iterations, to then develop new theories,

artifacts, and practices that can be generalized to other schools and classrooms (Barab,

2014). Conducting DBR requires posing significant questions that can be investigated

empirically, linking research to theory, providing a coherent and explicit chain of

reasoning, demonstrating impact, disclosing research data and methods to enable and

encourage professional scrutiny and critique, and employing methodological practices

that are deemed credible and trustworthy and that result in useful claims (Shavelson et

al., 2003).

56

The characteristics of DBR collated by many researchers can be found in

Baker and Verde (2015). According to them DBR has the following characteristics:

● developing theories about learning and the means that are designed to support that

learning

● implementation of the hypothesized learning is combined with the observation of

that happens during actual learning

● developing and evaluating interventions situated in the real-world context

● it is cyclic in nature and consists of phases as depicted in Figure 3.1 namely –

analysis/exploration, design/construction and evaluation/reflection.

In DBR the research begins with a detailed analysis of the problem, context

and participants. Analysis of existing literature on the problem, the associated

solutions designed, existing solutions in the given context or different contexts are

also done. The studies in this phase often are pilot studies and/or ethnographic studies

to understand the requirements of the learners (Figure 3.2). With the requirements, the

designers and researchers draw from related theoretical and empirical work to create

preliminary learning environment designs. The preliminary designs are then evaluated

using various methods to understand the difficulties, learning processes and expected

outcome. The reflection on the learning outcome and processes leads to refinement of

design and local learning theories (Cobb et al., 2003). Local learning theory refers to a

context specific theory about how learning happens in a specific context of the

learning environment (Cobb et al., 2003).

Figure 3.2 Typical DBR based research project phases (Barab, 2014)

We employed DBR methodology to examine novice design processes in SCD

and to study learning in environments that are designed by researchers. The research

plan is presented in the Figure 3.3. It consists of three stages – (i) learner needs

analysis, (ii) iteration 1 and (iii) iteration 2.

57

Figure 3.3 DBR cycles and the goals in this thesis

3.2.1 Learner needs analysis

The goal of this phase was to unpack the novices’ design strategies and cognitive

processes. This corresponds to goal 1 in section 3.1. As discussed in chapter 2, from

literature we determined that the FBS design framework was a useful theoretical lens

for unpacking novice design processes while performing the task of software

conceptual design. We also synthesized findings from literature about – i) novice

difficulties in engineering design [Chapter 2, section 2.5] and ii) expert design

strategies and cognitive processes [Chapter 2, Section 2.3] in software conceptual

design. As part of the problem analysis phase, to understand the novices’ design

processes in SCD we studied [Study 1] the novice strategies, processes and their

difficulties in software conceptual design [RQ 1.1 & RQ 1.2]. The RQs of this

iteration and its associated methods are described below.

Study 1: Broad RQ – How do novices create SCD?

1.a. What are the design strategies that novices follow while creating a software

conceptual design?

1.b. What cognitive processes do novices use while creating software conceptual

design?

We used the FBS design framework (Gero & Kannengeiser, 2014) as the

theoretical framework to understand novice processes. We wanted to understand what

58

novices do in their mind as well as with resources available to create a SCD. We also

examined their outcome to understand how these processes lead to the outcome.

“Protocol analysis is a methodology for eliciting verbal and action reports of

thought sequences as a valid source of data on thinking” (Gero et al., 2011). It has

been used extensively in design research to assist in the development of the

understanding of the cognitive behaviour of designers (Gero et al., 2011). In the

protocol analysis method we have performed the following activities: coding

development, capturing video of participants on task, transcription of video,

segmentation and coding, analysis of coded protocols, generation of linkograph and

analysis of linkograph. In qualitative research, coding is “how you define what the

data you are analysing are about'' (Gibbs, 2007). As identified in Chapter 2, section

2.6, we used the FBS design framework as our coding framework. After coding we

established the relationship between the codes using the linkography process.

Linkography is a method (Goldschmidt, 2014) in which the relationships between the

codes are analysed by creating a visualizing named linkograph. Goldschmidt (2014)

also went on to describe methods and metrics to analyse a linkograph. The complete

process is described in chapter 4 section 4.1.5.

3.2.2 Design Based Research Cycle -1

The learner difficulties emerging from study 1 provided us with requirements to

design pedagogy to support novices’ creation of SCD. The pedagogy is based on the

FBS design framework (Chapter 2, section 2.6 and 2.7). The FBS design framework

manifests as a FBS graph in the pedagogy. The literature points to usage of external

representation (Dym et al., 2005). So the pedagogy involves creating, editing and

evaluating the FBS graph. This led to preliminary FBS graph based learning

environments. Our goals to design these learning environments were that we alleviate

the novice difficulties found from study 1 and at the same support novices in creating

SCD that satisfy the criteria of (i) fulfilling requirements and (ii) integrated solution

design [Chapter 2, Section 2.2]. So for the evaluation [Study 2 & 3] of the learning

environments we looked at the participants FBS graph created during and after the

intervention. We also captured the participants’ reflection on the difficulties they

faced with the intervention. These were captured so that we can redesign the FBS

graph based pedagogy and create a learning environment that is useful and usable.

The RQs and the associated methods are described below:

59

Study 2 & 3: Broad RQ – What are the difficulties that learners have with FBS design

framework based interventions?

2.a. After interacting with the FBS based learning intervention, what are the kinds

of FBS graphs that learners create?

2.b.What difficulties do learners experience while using FBS based learning

designs for SCD?

The study method for in 2 and 3 was a post-test and semi-structured reflective

interview after the participants completed interacting with the learning environment.

To evaluate the SCD that learners create after the intervention in the studies [Study 2

& 3], we used the conceptual model quality (Lindland et al., 1994) as the basis for

analysing FBS graphs. The conceptual model quality (Lindland et al., 1994), attempts

to define quality as it relates to conceptual models. We adapted this framework for

FBS graphs. We evaluated the FBS graphs with five participants in the lab studies

[Study 2 & 3]. The rubric is available in more detail in Chapter 5, section 5.4, Table

5.3.

To understand the learner difficulties we utilized the semi-structured interview

responses from the learners. We first transcribed the interview responses. Then we

employed thematic analysis. Thematic analysis is defined as a qualitative method “for

systematically identifying, organizing, and offering insights into patterns of meaning

(themes) across a data set” (Braun & Clarke, 2017). It is used for organizing,

describing in detail and potentially providing interpretations regarding various aspects

of the research goal, which are grounded in data (Braun & Clarke, 2017). Our goal in

RQ 2.b is to identify difficulties that learners have during the intervention. The semi-

structured interview questions are framed according only to elicit responses and the

thematic analysis is to identify patterns relevant to this RQ. The steps, unit of

analysis, reliability of the coding process are discussed in detail in sections 5.4.2 and

5.4.4 in chapter 5. For the sake of this chapter we are reproducing the DBR iteration

Figure along with the studies and the associated RQ in Figure 3.4 below.

60

Figure 3.4 DBR iterations, studies and the associated RQs

3.2.3 Design Based Research Cycle -2

The goal of this iteration is to identify the changes in novices’ SCD outcome,

understanding and process. The results from iteration1 and the findings of RQ1.a, 1.b,

2.a and 2.b guide this iteration. From study 1 [RQ 1.a & 1.b] we unpacked the

novices’ design processes which helped us identify difficulties that learners face. Next

we surveyed literature to design the FBS graph based pedagogy and implemented it as

learning environments. The study 2 and 3 [RQ 2.a & 2.b] brought out the difficulties

that novices’ face in a FBS graph based pedagogy and learning environments. The

results form the requirements for the redesign of the learning environment. In this

iteration we refined the design of the learning environment to support the –i) creation

of integrated software conceptual design and ii) learning of design strategies in

software conceptual design. We performed heuristic evaluation to weed out the

usability related issues. We evaluate the re-designed learning environment, named

‘think & link’, with study 4 and 5 to examine the effects of the learning environment.

We examined the pre-post difference in -i) outcome of SCD [RQ 3.1], ii) learner

understanding and perception of processes in SCD [RQ 3.2 & RQ 3.3]. We also

analysed the learners’ actions in the learning environment and compared them with

their post-test performance. This helped us understand how the features support the

learners. The RQs and the associated methods are described below:

61

Study 4 & 5: Broad RQ – What are the changes in novices’ SCD understanding and

processes after interacting with ‘think & link’?

After interacting with ‘think & link’

3.a. What are the categories of SCD that learners create?

3.b. What are the changes in learners’ understanding of SCD?

3.c. What are the changes in the process of creating SCD that the learners

perceive?

3.d. How do the learners use the features in the learning environment?

The study method in 4 and 5 was a single group pre-post test, with open-ended

questionnaires both pre and post. For RQ 3.a. we used the categories of semantic

categories of software designs (Eckerdal et al., 2006; Eckerdal et al., 2006(a)). For

RQ 3.b and 3.c we used thematic analysis (Braun & Clarke, 2017). To examine the

usage of ‘think & link’ features, we examined the logs in the system. Logs refer to the

system action of recording user clicks on a menu/feature button. Each click is

recorded as an event that includes information about the user, timestamp, context of

the action and the action details. There are two kinds of events that are logged. One is

a system-generated event, e.g. phase completion, worksheet saved. The other one is a

user-generated event, e.g. click. We used the TraMineR package (Bürgin & Ritschard,

2014) in R to observe and extract the sequences. We also compared the sub-sequences

(Ritschard et al., 2014) that are prominent in the post-test categories. This indicated

the difference in strategy among the different performance levels.

3.3 Ethical Considerations

The following issues were taken into consideration while finalizing the research

methods and data analysis techniques:

● Preparing documentation for taking informed consent from the participants:

Participants were given a consent form before every research study detailing

the objective and the procedure of the study. In the consent form the data

collected for the study were explicitly mentioned. We offered clarification in

case they had any queries. Once participants had clarity regarding the above

points, they were asked for their consent. They had the option to discontinue

the study at any point of time. Additionally, they were assured that

participation in the study would have no bearing on their grades and academic

performance.

62

● The anonymity of all the participants was maintained throughout, and all the

data was collected, pre-processed, and stored for this appropriately. No one

apart from the primary and secondary researchers on the project had access to

the computer data and written artefacts of the participants.

● Most of the research studies in this thesis were conducted as lab studies and

workshops. As this involved undergraduate engineering students, it is

necessary to synchronize it with their calendars. Additionally all studies

required that the participants already have undergone courses in UML

modeling and software design. This brought the constraints to recruit

participants in their second to final year of engineering. Various details of the

studies were discussed with the instructors of the courses. To conduct

workshops in the institutions necessary permission and consent from the

concerned college/institution authorities was obtained. Student participation

was voluntary, and they were provided with (workshop) participation

certificates for attending the sessions.

3.4 Summary

In this chapter, we explained our choice of DBR as an overarching research

methodology and described the details of the two iterations of DBR undertaken in this

thesis, DBR1 and DBR2. We also described the studies done as part of each of these

iterations and their research methods. DBR1 is elaborated in chapters 4 and 5, while

DBR 2 is elaborated in chapters 6, 7 and 8. In the next chapter, we begin by

describing the problem analysis phase of DBR 1, study 1.

	 	

63

Chapter 4

DBR 1 Problem Analysis: Understanding Novice Design

Strategies and Difficulties
Most of the literature we have on novice design approaches report broad difficulties,

compare expert-novice approaches or evaluate and categorize novice-generated

artifacts. The section 2.3 brings out the design strategies and cognitive processes

involved in software conceptual design. From section 2.5, we see that novices have

difficulties while creating software conceptual design (SCD). The novice processes

and the difficulties they faced in the SCD tasks have not yet been minutely explored.

Our goal is to unpack novices design processes and assist novices in creating

integrated SCD that fulfils the requirements of the design problem.

The novices do have intuition and sense making resources, which can be

recruited, in formal education (Levy & Wilensky, 2008). Learners come with their

own perspective based on their own unique past experience. A learning needs

assessment can identify – (i) learner’s prior knowledge and experience, (ii) skills or

competencies that need further development, (iii) outcomes in particular that the

learner wishes to achieve. Literature suggests that learning is more likely to lead to a

change in practice if a needs assessment has been conducted (Fry et al., 2008). Novice

design studies need to be more focused in understanding their design approach and

needs.

This provided us with the motivation to conduct a ‘learner needs analysis’

study. In Section 2.6, we argued that the FBS design framework is an appropriate

“theoretical vehicle for understanding design, and as a conceptual basis for

computerized tools intended to support practicing designers” (Galle, 2009). ‘FBS

design framework is the appropriate theoretical lens for software conceptual design.’

In this chapter we address the first goal of this thesis, which is to understand

novice design processes in SCD. By examining their design processes we would come

to know of their difficulties that they face in the SCD task. We capture their task

process and their artifacts, which are then studied using the FBS design framework.

The research method is described in section 4.1.

64

4.1. Method

The broad research question guiding this study was, ‘How do novices create SCD?’

By explicating novices’ design strategies and cognitive processes, we will be able to

compare them to expert SCD design processes. This will bring out the difficulties that

novices encounter while creating SCD from a design problem. So, the research

questions guiding this study are:

1. How do novices create software conceptual design?

a. What are the design strategies that novices follow while creating a

conceptual design?

b. What cognitive processes do novices use while creating conceptual

design?

‘Design strategies’ refers to a sequence of particular activities i.e. tactics, design

methods to arrive at a design (Mathias, 1995). ‘Design strategies’ in study 1

corresponds to the sequence of FBS transformation processes (Gero & Kannengieser,

2014) as discussed in section 2.7. Cognitive processes refers to the internal

mechanisms, however in study 1 we have operationalized it based on cognitive

processes mentioned in conceptual design cognition (Hay et al., 2017).

4.1.1 Participants

For the study we had five participants (male=4, female=1). In this chapter the

participants are labelled as par1, par2, par3, par4, and par5. They were under

graduates and had completed their third year in computer engineering course from an

engineering college near the affiliated institute of the authors. The participants were

exposed to courses such as ‘Structured Object Oriented Analysis and Design’

(semester 5) and ‘Software Engineering’ (semester 6) as a part of their engineering

curriculum. These two courses cover topics of software design approaches, software-

modeling tools, characteristics of software solution etc. In these courses participants

use design tools such as rational rose, and online platforms such as staruml.io,

draw.io, creately etc. As the course contents included such concepts and experience

with design tools, it was appropriate to consider that they had prerequisite knowledge

for the design activity. The study was conducted over two days, with 3 participants on

day one and 2 participants on day two. All the five participants volunteered to be a

part of this study.

65

The objective was to obtain a typical representation of learners from the age

group (19–22) with appropriate domain exposure. The participants’ curriculum,

activities, exposure and knowledge regarding software design are similar to many of

the urban Indian engineering students. So it would be safe to say that the participants

are representative of Indian urban engineering students.

4.1.2 Design Problems

The four design problems in Table 4.1 below were given to the participants. We came

up with the four design problems based on the familiarity of software systems usage

among the students. For example the systems such as ATM, payment authentication is

familiar to participants as they encounter such systems in their day-to-day lives. In

these problems the functional specifications are open-ended, and a part of the problem

(ATM, payment systems, recommender system, music player) gives indication for the

functional decomposition. By open-ended we mean that no requirements were

provided to the students. Participants had to assume the requirements from the

problem and solve the problem. Functional decomposition is describing the system

based on the input, output and the transformation(s) that occur between input and

output. For example due to the usage of ATM, the students know that the ATM

requires an authentication/identification for a bank account as input and provides cash

as output. The usage familiarity provides the students with indications for functional

decomposition. The indications for functional decomposition make the design

problem tractable for novices.

We have different design problems that the students worked on. We believed

that by providing choice and working on a design problem of their choice the

participant would feel motivated. Based on our software development and teaching

experience the four different problems are equally matched in terms of complexity,

time taken to solve, and amount of code that needs to be written. They are in between

the innovative and creative design problem category (Brown & Chandrasekaran,

2014).

Table 4.1 Software design problems given to participants in Study 1

Problem Day 1 Day 2

66

1 Design a fingerprint ATM system

(par2)

Design a fingerprint based payment

system

(par4 & par5)

2 Design a mood based automatic

music player

(par1 & par3)

Design a cooking recipe

recommender system

4.1.3 Study Procedure

Each participant was asked to select one of the two problems and create a conceptual

design. Participant 1, 2 and 3 (par1, par2, par3) were present on day one. Par1 and

par3 chose problem 2 (mood based automatic music player) whereas par2 chose

problem 1 (fingerprint based ATM system). Participant4 and participant5 (par4, par5)

were present on day 2. Both of them chose the problem 1 (finger print based payment

system). We had offered a laptop to the participants in case they wanted to search any

information or use any design tool. The participants were informed that at any point

during the activity they could search for information, install any software, ask

questions and think aloud.

Among the two of us, I, as an observer and researcher was present during the

activity. Before the start of the task the verbal instructions on the task requirements

were delivered. Participants were encouraged to ask questions about the requirements

of the task, which were answered. During the task, participants were encouraged to

think aloud. Observations were made while the participants completed the task. A

video camera recorded the participant’s actions while they went about the task. After

every 30 mins participant’s progress was evaluated and if deemed necessary prompts

were provided to help the participant. The prompts were based on the scaffolding

framework for ill-structured problem solving (Xun & Land, 2004) adapted to the

context of SCD.

After completion of the task all participants were interviewed. The interview

was semi-structured where the questions were framed predominantly to get the

participants to reflect on their task. Some participants were forthcoming with their

responses as self-reports, while some others had to be prodded more. Questions such

as ‘Can you elaborate why did you do this?’ ‘What made you pause on this point,

67

anything you can reflect on?’ were asked so that participants can recollect and explain

their process of design.

4.1.4 Data Source

Each participant was required to select one of the problems (Table 4.1) and create a

conceptual design. We consider design as a distributed activity, which happens across

the tools, environment and artifacts. Additionally design tasks in the workplace also

happen in a similar way. So we provided the participants a work like environment, a

large Table with pen, paper and a laptop. The artifacts that the participants created

were collated. While the participants were on the task, video recording of the activity

and screen capture of their interaction with the laptop was captured. Post task the

participant was also interviewed. The interview questions were such that we asked the

participant to reflect on the process. For example questions such as “Can you

elaborate why did you do this? What made you pause on this point, anything you can

reflect on?” were posed so that participants can recollect how they arrived at the

design elements. For RQ1.a and RQ 1,b, the data sources included the video recording

of the activity, screen captures, participant generated artifacts, and the interview

transcripts.

4.1.5 Data Analysis

For both the research questions we utilized the three sources of data – task video

recording, screen capture and artifacts. The artifacts were analysed based on the

categories by Eckerdal et al. (2006). The task video recordings were analysed for the

FBS design framework elements. The unit of analysis for function (F) was

words/sentences, for structure (S) words and for behaviour (B) it was sentences. We

utilized the linkography (Goldschmidt, 2014) method, which is widely used to

understand the design process. In our analysis, we represented the FBS codes as a

linkograph, which represents not only the codes as autonomous entities, but as design

moves with inter-related links. The interrelated links of the FBS codes gave us the

opportunity to analyse the design strategies. To unpack the cognitive processes that

novices used to create and link the design moves we used the conceptual design

cognition framework (Hay et al., 2017).

 We began with analysis of the artifacts. The results of this analysis are utilized

in both the RQs 1.a and 1.b. In the next sub-section we describe the analysis of the

artifacts.

68

Participant generated artifacts - We analysed the artifacts based on the categories of

software designs (Eckerdal et al., 2006; Eckerdal et al., 2006(a)). The categories are

presented in the Table 4.2 below. These categories are results of a phenomenographic

analysis (Eckerdal et al., 2006(a)) of the phenomenon ‘produce a design’. Eckerdal et

al. (2006) aimed to gather the understanding of this phenomenon by giving the final

year project students a design problem and collecting the design artifacts. Using the

artifacts they came up with various categories in which students understood the

phenomena of SCD. We utilized these categories of student designs to classify the

final artifacts of the participants.

Table 4.2 Categories of software design (Eckerdal et al., 2006)

Category # Category
Content

(Indicators)

Representation

(indicators)

0 Nothing Little or unintelligible content

Single labelled
diagram
Informal design

1 Restatement

● Restate requirements from

task description
● No design content other

than stated in the
description

List or Bulleted items
Informal design

2

Skumtomte*
(Named after a
Swedish
marshmallow treat,
these
designs add a small
amount to restating
the task)

● Add a small amount to

restating task
● Unimportant

implementation details
● No overall system view and

any work on modules

Simple GUI

3 First step
Some significant work beyond
restatement

Formal notation
representing structure
Design of one of the
system’s components

69

like GUI or Database

4 Partial design

● Understandable description

of parts and overview
● Description of parts may be

incomplete or superficial
● Communication between

parts may not be
completely described

Formal notation
representing behaviour
Illustration of
relationship between
the parts

5
Complete
Design

● Well developed solution
● Understandable overview
● Solution parts description

includes explicit
communication between
them

● Formal representations as
well as text

Multiple formal
notations such as Use
case, Class diagram,
component diagram

4.1.5.1 Analysis for RQ 1.a. - What are the design strategies that novices follow

while creating a conceptual design?

Activity coding – For the RQ 1.a we utilized the three sources of data – task video

recording, screen capture and artifacts. We performed three cycles of coding as shown

in Figure 4.1 below. In the first cycle we performed activity coding (Bogdan &

Biklen, 2007). In activity coding we looked at the participant’s observable and

distinguishable actions from the three sources of data. We first started by looking at

the activity video and coded the actions. In the video whenever the participant wrote

in the paper, we paused the video and referred to the artifacts. Similarly whenever the

participant would use the laptop we paused the video and referred to the screen

capture.

70

Figure 4.1 Data Analysis for research questions

The source of the actions and the unit for logging each action is presented in

Table 4.3 below. This coding did not involve making any inferences and resulted in a

merged timeline of actions. This merged timeline of actions consisted of participant’s

actions including explicit actions like internet search, sketching/writing on the paper.

We noted the utterances, gestures and conversations in the episode from the video.

Table 4.3 Activity coding

Action Logging Unit Source

writing line *Video

*Artifact
drawing each object and annotation

editing line /each object/annotation

deleting line /each object/annotation

staring time spent stare and next observable action Video

talking line

71

researcher

talking

line

reading spends some time in the page (> 5 seconds) *Video

*Screen capture
scanning evident from scroll action

searching search query in a search engine

opening clicks on a hyperlink

returning return to a previous web page

 The output of activity coding is a merged timeline of actions that the

participants performed to complete the SCD task. This merged timeline is the input

for the next step of analysis where we applied the FBS design framework lens.

Segmentation based on FBS codes- On the merged timeline of actions we looked for

the codes: function (F), expected behaviour (Be), structure (S), behaviour of structures

(Bs), Other (O). The FBS design ontology (Gero & Kannengieser, 2014) has a set of 6

codes - Function (F), Expected Behaviour (Be), Structure (S), Behaviour of Structures

(Bs), Documents (D), Requirements (R). Since we are looking at the process we

utilized all the codes except for Requirements(R) and Documents (D). The four codes

(F/Be/S/Bs) were adapted to the context of software design. The Table 4.4 below

captures the classification indicators in the context of the problem ‘mood based

automatic music player’.

 An action could be coded as F/Be/S/Bs and if none of the four codes are

applicable we coded it as other (O). This formed the second cycle of coding. The FBS

based coding scheme converts the merged timeline into a series of segments where

each segment is tagged with a code, F/Be/S/Bs/O.

Table 4.4 FBS codes on the merged timeline

Design

Element

Code Classification Indicator Example Design Problem

(Mood based automatic

72

music player)

Function F activity performed by the

software system

Mood detection

Expected

Behaviour

Be expected behaviour of the system

extracted from the functions

Voice Based Mood

Detection (F) - System

needs to capture the voice

Structure S the solution concepts and

components (hardware and

software) required to achieve the

function

Camera, software to detect

mood

Structural

Behaviour

Bs behaviour of the structure,

extracted from structures

Camera (S) - Facial

features/points are

extracted

To establish reliability in the coding process, a fellow researcher and I coded a

participant’s merged timeline. The coding process was repeated with parts of the

participant’s data until both the coders converged on the same codes for each of the

actions. To identify F and S, the unit of analysis was words or at most two words.

Then we examined the context in which these words are used. The classification

indicator for function and structure is as given in the Table 4.4. For behaviours (Be

and Bs) we utilize sentences. We examine if the behaviour is extracted from the

function, then we classify it as Be and if the behaviour comes out of analysis of

structures it is classified as Bs. The excerpts of the protocols recorded and the code

applied are presented in Table 4.5 below. For example, one of the actions that a

participant performs in the SCD task is writing ‘ identity fraud less likely’ (row 3) on

the paper. This corresponds to extracting expected behaviour from the system, and is

marked with the code Be (expected behaviour).

73

Table 4.5 Excerpts of protocols with the coded segments

Timestamp Action Predicate Details Codes

00:12:10 -
00:12:34

reading

the paper in front of
him

From the web page
information listed goes back to
the listing in the paper and
looks back at it.

O

00:12:39

opening

the link

Disadvantages of Automatic
Teller Machines
(www.sapling.com/6119408/di
sadvantages-automatic-teller-
machines)

O

00:12:56

writing

Identity fraud less
likely

Be

00:12:57-
00:14:12

reading

the article

Disadvantages of Automatic
Teller Machines
(www.sapling.com/6119408/di
sadvantages-automatic-teller-
machines)

O

00:14:30

writing

Added layer of
security

Be

00:14:31 -
00:15:37

reading

advantages and
disadvantages that the
participant has written

participant seems to be
reviewing the list of
advantages and disadvantages
that he has written

O

00:15:42

writing

current system

F

74

00:15:58 -
00:16:23

drawing

*block of ATM Card
*connects to landing
screen block
*connects the
previous block and
then draws PIN block
*connects the
previous block and
then draws Amount
block
*connects the
previous block and
then draws cash block

*S
*S
*S
*S
*S
*Bs

00:16:34

writing

Proposed System

F

00:16:56

writing

Scenario 1: Card is
present with user

Be

The analysis of coded protocols for a design task would need to be more than

just the sequence of codes. The design task consists of interdependencies, back –forth

and iterations. The method named linkography provides ways to establish links

between the codes. The next section describes the method of linkography and the

visualization created, namely linkograph.

Generation of linkograph – In the third cycle of analysis we use, linkography.

Linkography is a technique used in protocol analysis to study designer’s actions

(Goldschmidt, 2014). This technique produces a representation of the design process,

namely linkograph. Linkograph has been utilized to analyse protocol codes of

designers and now is an established method for studying design cognition (Kan &

Gero, 2017; Hatcher et al., 2018; Jiang & yen, 2013). In order to generate a

linkograph, the protocol codes are listed in a chronological order called design moves

(Goldschmidt, 2014). A design move is defined as “ a step, an act, and operation,

which transforms the design situation relative to the state in which it was prior to that

move” (Goldschmidt, 2014). After the chronological arrangement of the coded

protocols, the links between the design moves are determined by answering the

75

question – is the design move N related to any of the previous N-1 moves? Based on

the answer to this the related design moves for each move is noted down and a

diagram similar to the Figure 4.2 below is constructed.

Figure 4.2 Various moves and types of links in a linkograph

In a linkograph, there are 4 different types of moves – orphan (move 10),

unidirectional (moves 1–3, 5–9,11, 12), bidirectional (move 4) and critical (move 4).

There are two types of links: fore link (blue) and back link (red). The green link is

emphasized here to bring out the fore links and backlinks associated with move 4. The

forelink indicates a design move utilized ahead in other design moves. The back link

indicates the design moves utilized to arrive at a design move. The analysis

parameters utilized are – link index and critical move. Link index refers to the ratio

between the number of design moves and links. The critical moves are moves that are

rich in links to other moves (move 4). A critical move which has higher fore links is

indicated as a CM with the symbol > along with the superscript indicating the number

of links. For example move 4 is indicated as CM5>. A critical move with ‘t’ back

links is indicated as <CMt.

After coding and categorizing for each action (F/Be/S/Bs/O), we assigned

numbers to actions (1, 2,..Ni, ….N), which are coded as F/Be/S/Bs in increasing order

of timeline. . The actions now are termed as design moves indicating that each of the

moves made by the participant is a step, an act, an operation, that transforms the

design situation somewhat relative to the state it was in before that move

(Goldschmidt, 2014). The goal was to generate a linkograph, which establishes

relationships between the actions. Each action Ni was examined with a question – ‘if

an action Ni is related to any action Ni-1 to 1’. If the action Ni is related to any action

76

between Ni-1 to 1 the actions are noted down. To establish reliability in the

relatedness between actions, the first author and another researcher checked all the

actions’ relatedness of a participant. The process stopped only when both the

researchers converged on their relatedness codes. After this process, a linkograph is

created (Figure 4.2). The linkograph is analysed based on its analysis parameters –

link index and critical moves. Link index refers to the ratio between the number of

design moves and links. The critical moves are moves that are rich in fore/back links

to other moves. For each participant we additionally chunked design moves based on

spread of critical moves and the logical interlinks between the design moves. A set of

moves that are visibly grouped together to create a set is termed as chunk

(Goldschmidt, 2014). To analyse the links between design moves, the actual links

between the design moves were considered and not the chronological sequence of

design moves. This is referred to as semantic analysis of the links. We observed links

between the design moves, and tagged it based on design transformation (Gero &

Kannengeiser, 2014) like formulation, synthesis, analysis, evaluation, and

reformulation. For e.g. a link between F and Be design move is tagged as design

strategy formulation.

The above processes of categorizing, coding for F/Be/S/Bs codes in actions

and finding the relatedness between these actions lead to the generation of a file as

shown in Table 4.6. The excel files consisting of design moves and their related

design moves (links) were created for all participants and provided as input to the tool

LINKODER (Pourmohamadi & Gero, 2011). The tool provided general statistics on

the number of actions, links between the actions, category of links for each

participant. The tool also provided a linkograph for each participant. In the linkograph

of each participant we additionally chunked design moves based on spread of critical

moves and the logical interlinks between the design moves. We analysed each chunk

of the participant based on the structural parameters of linkograph and design

strategies.

Table 4.6 Template of participant actions provided to LINKODER to generate

linkograph

Utterance Code Links

1 PIN S
2 4 Digit Bs 1

77

3
Large Sum transaction (dual
authentication F

4 memory S

5
visually impaired
(convenience) F

6
Security or emergency
fingerprint F

7
person may be forced into
withdrawing cash Be

8 fingerprint can be replicated Be
9 Cardless withdrawal F

10 Identity fraud less likely Be
11 Added layer of security Be
12 block of ATM Card S
13 landing screen block S
14 PIN block S 2 1
15 Amount block S
16 Cash block S

17

Connecting the blocks of ATM
card, landing screen, PIN,
amount & cash Bs 16 15 14 13 12

18
Scenario 1: Card is present
with user Be

19 Card S 12 18
20 landing screen S 13
21 FP Authentication F

22
FP Authentication and
connects 'landing screen' to it Be 21 20

23 Amount S 15

24
Check against user set cap and
connects 'Amount' to it Be 23

Summary of analysis process for RQ 1.a – To answer RQ 1.a, we utilized the three

data sources of task video recording, screen capture and artifacts. In the first cycle of

analysis, we looked at the participant’s observable and distinguishable actions from

the three sources of data and applied activity coding to create a merged timeline of

actions. In the second cycle of analysis, we segmented the timeline of actions to the

FBS design framework elements (see Table 4.6). This resulted in a sequence of

F/Be/S/Bs/O codes. In the third cycle of analysis, we determined the semantic links

78

and interdependencies between the codes and created a linkograph. The linkograph is

a visual representation of the design codes in terms of the FBS design elements and

their links. Using the standard analysis metrics (link index and critical moves) as well

as processes (chunking) we analysed each participants’ linkograph to explicate the

design strategies. We also compared the design strategies of participants according to

their final artefact evaluation using Eckerdal et al.’s (2006) categories.

4.1.5.2 Analysis for RQ 1.b. - What cognitive processes do novices use while

creating conceptual design?

Hay et al.’s (2017) conceptual design cognition is the lens utilized to explicate the

cognitive processes in the participants. The conceptual design cognition presents a

generic classification of cognitive processes used in conceptual design from a meta-

analysis of 47 protocol studies published over the past 30 years in conceptual design

cognition (Hay et al., 2017). Analysing the protocol studies, the authors mapped

specific descriptions of cognitive processes in the sample to more generic, established

definitions provided in the cognitive psychology literature. It covered various

domains such as architectural design, engineering design and product design

engineering. The generic classification resulted in 6 categories of cognitive processes.

However, not all the categories of cognitive processes are utilized during SCD. In

Table 4.7 we present the categories and their details that were applicable only during

this study.

Table 4.7 Conceptual design cognition in SCD (Hay et al., 2017)

Cognitive

process
Definition Role in design

Episodic

retrieval

retrieval of previous experience Retrieving

experiences or

representation

s

Semantic

retrieval

retrieval of type of product and function during

concept generation

Analogical

Reasoning

process of using information about known

semantic concepts to understand newly presented

concepts

Producing &

combining

concepts Concept

generation

the process of generating ideas for

solutions/partial solutions to design problems

79

Mental

simulation

process of imagining and mental rehearsal of

actions to produce or combine solution concepts

Developing a

solution

based on the outcomes of actions taken to

structure/restructure the problem during co-

evolutionary design

Problem

structuring

and analysis

setting up goals and defining constraints

Planning,

monitoring &

selecting

Evaluating

concepts

process of assessing concepts against design

requirements, constraints, and other criteria

Reasoning process of developing a rationale for design

decisions

 For the RQ 1.b we utilized the four sources of data – task video recording,

screen captures, artifacts and interview transcripts. We utilized the merged timeline of

action, which is generated after activity coding (see Figure 4.1). To this merged

timeline of actions, we tagged the self-reports and participants responses to interview

questions. We used the conceptual design cognition (Hay et al., 2017) as the lens to

find the cognitive processes. The cognitive processes from conceptual design

cognition (see Table 4.7) were utilized to code. We took each sentence from the

interview transcript, tagged it with a cognitive process from Table 4.7. We coded for

the cognitive processes until convergence in codes was achieved. A snapshot of this

process is depicted in the Figure 4.3. For example if the participant arrived at a design

move by recollecting prior experience we tagged it as cognitive process retrieval. The

participant would have uttered the recollection of prior experience.

80

Figure 4.3 Coding of participant interview transcripts for cognitive processes

4.2. Results

The goals of this chapter are to explore the novice design strategies (RQ1.a.) and the

cognitive processes (RQ1.b.) that they utilize during the task of SCD. To interpret the

results, we grouped the participants according to their design performance. We

utilized the categories to evaluate the final artifact of SCD created by novices as

formulated by Eckerdal et al. (2006) present in Table 4.2. We evaluated the final

artifacts of the participants based on these categories (refer Table 4.8). We see that

there are two broad groups of participants.

Table 4.8 Participants' artifact evaluation using categories by Eckerdal et al. (2006)

Participant Problem Conceptual design

category

par1 Design a mood based automatic music

player

Skumtomte

par2 Design a fingerprint ATM system Partial design

par3 Design a mood based automatic music

player

Skumtomte

par4 Design a fingerprint based payment

system

Complete design

par5 Skumtomte

Par1, par3 and par5 are in the group ‘Skumtomte’ as the designs lacked ‘overall

system view’. Par4’s conceptual design was well developed with integrated formal

81

representations like component diagram, use case and behaviour diagram. Par2’s

conceptual design had descriptions of each part of the design however the parts lacked

integration between them. Par4’s conceptual design falls into the category of

‘complete design’ and par2’s ‘partial design’. Par2 and par4’s conceptual designs had

understandable overview and well-developed solutions. Par4 had explicit interlinking

between the parts of the solution which par2 did not. Both par4 and par2 used formal

notations of use case, component diagram, class diagram and sequence diagram. Par4

due to the interlinking between the parts had a complete design that can be picked up

by the development team for coding. To present the results for both the RQs we have

placed the participants into two buckets, successful and unsuccessful. Based on the

final artifacts evaluation, par2 and par4 are in the successful group of participants,

whereas par1, par3 and par 5 in the unsuccessful group.

4.2.1 RQ 1.a. What are the design strategies that novices follow while creating a

conceptual design?

We present the result in two pieces. The first piece of result comes from all the

participants’ linkograph general statistics. In the section named ‘linkograph analysis’,

we report the analysis of participants’ linkograph. We compare and contrast the

number of design moves and link index with the two groups of participants. (Table

4.9) We also examine the kind of links, which indicate the design transformation

(Table 4.10) in the groups of participants. In the section named ‘Initial approach to

solution’ we detail out the design strategies that participants utilize in the beginning of

the task of SCD creation. In the section named, ‘solution generation design strategies’

the design strategies that participants utilize to create design solutions are elaborated.

We zoom into the design move blocks of each participant’s linkograph, to extract the

design strategies. The design moves blocks are based on the critical moves and

patterns in a linkograph. We separated the sections because it was important to

unpack novices’ initial approach and solution generation strategies. Finally, section

‘summary of design strategies’ summarizes the design strategies and provides answers

to RQ 1.a.

Linkograph Analysis

The linkograph comes with its own set of analysis parameters. As discussed in section

4.1.5.1, evaluation parameters of design move and link index is presented in Table

4.9. We further extended the link index to capture the semantically valid links and

82

called it Link index’. The Table 4.9 below captures the details of design moves, total

links and the link index.

Table 4.9 Participants' design moves, links and link index

Participan

t

Design

Moves

Total

Links

Semantically Valid

Links

Link

index’

par1 77 200 111 1.44

par2 137 176 134 0.98

par3 45 51 17 0.38

par4 143 162 109 0.76

par5 53 44 33 0.62

In a linkograph consisting of a large number of moves there is a larger

potential of links. From the Table 4.9 we see that par1 had the highest link index. A

high link index may be the result of repetitions or many attempts to achieve synthesis.

Par1 even with a high link index is in the category of unsuccessful participants.

Among the successful participants par2 & par4, par4 when compared with par2 has

lower number of links as well as link index. The link index value and the design

quality may not have correlation.

The linkograph is a network of transformation of design processes. In the

design process of the participants we observed only 4 of the codes (F, Be, S, Bs) and 7

design processes. Links provide indications of the design processes based on the FBS

design ontology. The Table 4.10 shows the FBS related processes.

Table 4.10 Participant wise comparison of design strategies

Par

Formulat

ion

F->Be

(%)

Synthe

sis

Be->S

(%)

Analy

sis

S->Bs

(%)

Evaluat

ion

Be<-

>Bs

(%)

Reformula

tion

S->S

(%)

Reformula

tion

S->Be

(%)

Reformula

tion

S->F

(%)

par

1

16.2 37.8 13.5 11.7 11.7 9 0

par

2

6.7 6 31 4 54 27 3

par 94.1 0 5.9 0 0 0 0

83

3

par

4

4.6 4.6 49.5 6.4 31.2 0.9 2.8

par

5

27.3 0 18.2 0 30.3 21.2 3

Par3 had the highest % of links pertaining to formulation; par1 had the highest

% of links pertaining to synthesis. Par5 did not have links of the category synthesis

and evaluation, however had almost all the reformulation links. Par4 had the highest

% of links in analysis of structures and par2 had the highest % of links in

reformulation of structures and behaviours.

Initial approach to solution

Successful participants. Par2 and par4 anchored their solutions with familiar systems

and structures. Par2, who chose the fingerprint ATM problem (see Table 3), at the

start anchors to a similar system (card & pin based ATM) and goes on to elaborate the

proposed solution based on this system. The initial approach of Par2 was to retrieve

working of the card & pin based ATM system from experience and then focus on the

main difference between the current and proposed system i.e. authentication

mechanism. Par2’s complete design moves are presented in Figure 4.4 below. The

next couple of paragraphs we explain in detail par2’s initial approach.

84

Figure 4.4 Linkograph of par2

The design problem that par2 had chosen to solve is ‘fingerprint ATM

system’. Par2 started with a similar system (card & pin based ATM) and gradually

expanded his proposed solution by: (i) finding key differences between existing

systems and proposed solutions, (ii) turning the disadvantages of existing systems to

features in proposed solutions. After listing the functions, par2 moved to screen

designs, which are also generated by utilizing the existing system (see Figure 4.4).

Par2 then created the dynamic behaviour of the proposed system. Par2 started by

retrieving experiences of a current existing system, card & pin based ATM. This led

to generation of structure (move 1- PIN), which then was analysed to derive the

behaviour (S->Bs). Then par2 focused on the main difference between current and

proposed mechanisms indicating the cognitive process of analogical reasoning. By

this process par2 arrived at the function of dual authentication mechanism (move 3).

Par2 had seeked information on the ‘atm system drawbacks’ by utilizing the

search engine. Par2 looked at the drawback of the current ATM system and

incorporated information from the search into the solution as features of the proposed

system. The identification of features of the solution indicated the process of defining

goals and problem structuring. Par2 also generated failure cases in the proposed

system e.g. fingerprint can be replicated, person may be forced or coerced into with

drawing cash. These failure cases led to the generation of expected behaviour in the

85

moves 7 and 8. The generation of failure cases indicated the process of constraint

identification and problem analysis. Par2 then continued seeking information about

the disadvantages of the current ATM system to incorporate in the proposed solution.

To understand more about the current ATM system, par2 constructed an informal

representation (block diagram) expressing the use case of 'cash withdrawal'. This

move of constructing informal representation concluded at design move 17 (CM5>).

 The design problem that par4 chose to solve is ‘Design a fingerprint payment

system’. Par4 at the start anchored to a known structure (aadhar API). Par4 then

hooked the structure of aadhar API to create the solution for a fingerprint payment

system. So the initial strategy of par4 was to retrieve a known structure and then adapt

it as a solution for the design problem at hand. Par4’s linkograph consisting of the

complete design moves are presented in Figure 4.5.

Figure 4.5 Linkograph of par4

Par4 started the design process by immediately associating a structure (aadhar

API). Based on this structure par4 generated functions (getting and verifying the

fingerprints). Par4 elaborated the solution design by generating structures. For

example identifying that there exists SDK for fingerprint readers (SDK for FP). The

other process that par4 utilized was to create failure scenarios and generate structure

to combat it, e.g., special sensors to detect human or synthetic fingerprints. Par4 also

86

generated solution concepts by simulating scenarios from a system perspective, e.g.,

explored the connection mechanism between a fingerprint reader and a laptop.

Additionally, par4 identified potential users of the system.

Summarizing, successful participants (par 2 and par4) started with structures

of known systems. After retrieving known structures they adapted them to create

solutions for the design problems at hand. They extracted behaviours from the

structure (Bs). They also created functions (F) from the structures. These correspond

to the strategies of analysis and reformulation with respect to the FBS design

framework. Par2 and par4 also generated expected behaviour (Be) of the solution

from the function, which corresponded to formulation strategy.

Unsuccessful participants. Par1, par3 and par5 are the participants whose conceptual

design solutions fall into the category of ‘Skumtomte’. Par1 and par 3 chose the

problem of ‘mood based automatic music player’ while par5 chose the problem of

‘fingerprint payment system’. All the three participants had similar processes to start

the solution for design: searching for solutions/similar systems and solution concepts.

The participants were unable to utilize the information from search results in the

problem context.

 The design problem that par1 chose to solve was the ‘mood based automatic

music player’. Par1 identified features pertained to addressing a part of the problem

(mood detection) e.g. capturing mood, capturing mental thinking. Par1 then spent

time on the internet seeking information. Some of the search queries by par1 are 'how

can I check a person's mood’; ‘AI to identify a person’s mood’. These search results

resulted in many solutions to the problem of mood detection. The participant then

quickly added the search results as structures (e.g. heart rate, fingerprint, voice

scanners) to the proposed solution. The participant didn’t evaluate the integration of

such structures. Par1 failed to identify constraints, determine feasibility of such

structures and directly added them to the proposed solution. The participant had

altered the problem from ‘mood based automatic music player’ to ‘mood detection via

different methods’.

 When we examined par1’s linkograph (see Figure 4.6) we observe that it has

the most number of links among all the participants. Par1 has 200 links in the

linkograph among which 56% of them are semantically valid links. With 77 design

moves par1 has the highest link index 1.44. The high link index in this participant’s

87

case is a repetition of a set of design moves. The design moves are also highly

interlinked. The repetition and the high interlinking indicate fixation.

Figure 4.6 Linkograph of par1

 The design problem that par5 chose to solve was – ‘finger print based payment

system’. Par5 started with the feature of security. This feature is generic and is

applicable to most systems. Par5 from previous experience retrieved the function and

associated structures. Par5 continued doing the same for other features. Par5 then

recalled the concept of ‘Block chain’. Par5 then proposed to implement a Block chain

for secure payments. Throughout the task phase the participant moved between this

feature and structure pair. The lack of experience with the concept and similar

systems made par5 fixated to this solution concept. Like par1, par5 altered the

problem ‘design a fingerprint payment system’ to ‘block chain for secure payments’.

 Par5’s linkograph has 53 design moves and 44 links (see Figure 4.7). Among

the links around 755 of links are semantically valid. There are 8 critical moves: 2

(CM4<), 11(CM4<), 12(CM3<), 15(CM7<), 20(CM3<), 25(CM4>), 29(CM3>), 48

(CM4>).

88

Figure 4.7 Linkograph of par5

Par3 started the creation of a solution by formulating the expected behaviour

of the solution. Design moves 1–6 reflect the generation of expected behaviour (see

Figure 4.8). At design move 8 par3 generated a function and then formulated the

expected behaviour. Design moves 8–11 reflect that design strategy. Par3 continues to

formulate the functions and expected behaviour in the similar way from steps 13–18.

These design moves correspond to the playlist e.g., placement of song in a playlist,

movement of songs in the playlist. From move 19–21 focus on mood detection. Par3

was still formulating functions and expected behaviour for mood detection in the

design moves 26–30. Par3 spent a lot of time formulating functions to expected

behaviours. Similarly, par1 and par5 start from the prescribed process of problem

formulation by performing searches in the search engine on the internet.

The unsuccessful participants started with solution features (F) and then

created expected behaviour of the solution (Be). So, we see that unsuccessful

participants start with the prescribed process of problem formulation strategy (F->Be).

89

Figure 4.8 Linkograph of par3

Solution generation strategies

Successful participants. After retrieving the working of the card & pin based ATM

system from experience, par2 focused on the main difference between the current and

proposed system i.e. authentication mechanism. Par2 had seeked information on the

drawbacks of the existing system. Combining the results of the search and the earlier

identified difference, par2 generated features for the proposed system e.g., dual

authentication, visually impaired, emergency fingerprint. For the generated features

par2 then went on to generate failure cases. Par2 created a block diagram of the card

& pin ATM system’s workflow in order to explicate the understanding of the

workflow of the system. To generate workflows of the proposed system par2

generated scenarios from the end user perspective, e.g., card present with user. While

creating the workflow the participant identified components (landing screen, checks

against amount entered in the screen with user cap) and features (i.e. functions such as

FP authentication, PIN authentication). Par2 kept anchoring around the similar system

(card & pin based ATM) and seeked information in order to extend from the similar

90

system to the system to be designed as indicated by web searches. Par2 went back to

the search query to type in a new search (increased speed of transaction).

Par2 then generated screens for the proposed solution again anchoring it to the

similar system (card & pin based ATM). Imagination of users utilizing the system

served as the major cognitive process used by Par2 in this part of the design task. For

instance, Par2 mapped certain screen elements (separation of cash withdrawal from

the other bank tasks) to the feature of ‘transaction time’. To do so, when designing the

specific task of ‘Withdrawal’ par2 imagined a user utilizing this feature, leading to the

purpose of reduced transaction time. The participant continued doing this for every

screen element in the proposed solution. Par2 then created a dynamic representation

of the proposed system, a sequence diagram. However he created the diagram for the

specific case of withdrawal but was unable to connect back the parts of the

representation to previous design moves.

Par4 after starting with structure as the anchor he mentally simulated failure

scenarios, which helped him to identify problem constraints, e.g., the system may fail

to authorize foreign citizens. He created two versions of the solution (laptop/mobile

based). At each step he generated solution concepts by mentally simulating from the

system perspective, for example ‘System can use the Aadhar API for verifying the

fingerprints’. He then imagined the connecting mechanism of the fingerprint reader in

the two proposed solutions (laptop/mobile based). Par4 then reflected on the cost and

feasibility of both the systems (constraints).

To expand both the solutions par4 draws on similar systems from experience

(FP-ATM, Apple Pay/Google Pay, Startopen) and found the differentiating factor

between similar systems and the current solution. These actions helped the participant

to generate functions, structures and behaviours to each solution. Par4 then seeked

information to evaluate each solution using the pros-cons and identifies potential

users of the system. Similar to par2, par4 also utilized the orientation strategy of

drawing a diagram. However before elaborating the system par4 seeked information

from the internet to detail the internals and the solution. Par4 then detailed the mobile-

based solution using a block diagram, which closely resembled a component diagram.

The solution structures were then synthesized to features of the proposed system and

end user behaviours.

We utilized the linkograph to zoom into the design strategies that par2 and

par4 employed. Par2 and par4 all along the three chunks started with design strategies

91

relating to structures, which are analysis and reformulation of structures. Par2 and

par4 employed the synthesis and evaluation design strategy, which connects the

problem space and solution space. Par4 had a complete design due to the connection

between the different parts of the solution details.

Par4 was the only successful participant with a complete design in the final

artefact. So to understand par4’s solution generation strategies (Figure 4.5) we zoom

into the linkograph to capture the design strategies. Utilizing the Figure 4.9 we

present par4’s design strategies in depth below.

● design strategies around structures: Par4 retrieved and then examined the closest

similar system encountered, which happens to be the FP-ATM. Finding the

difference between FP ATM and the proposed system, lead to the identification of

the structure in the proposed system (payment gateway, design move 25). As seen

in Figure 4.5 (chunk I), the design process of analysis occurs first. The process of

retrieval and evaluation, lead to generation of solution concepts in the proposed

system. The participant began by expanding the solution details by adding

structures in the design solution, evident from the moves 27 onwards. To be able

to expand the solution and add details, par4 seeked information by querying the

search engine. Par4 after identifying and listing structures continued to analyse

them to generate behaviours from structures evident in the duos between S & Bs

from the links between design moves 27–37. The design moves from 34–42

indicate that Par4 simulated the steps that a user (customer) of the system would

undertake as they interact with the system. Par4 generated new structures in chunk

II by simulating the deployment of the solution in a real life scenario. This

simulation yields newer details of the solution from the moves 71–77.

Reformulation of structures and analysis are the strategies that occur highly in

chunk II as well as chunk1.

● reflection about implementation feasibility: Par4 reflected on the implementation

feasibility and cost of the proposed system. This process of reflection indicates the

constraints identification via problem analysis. This process helped par4 to

eliminate a structure (computational device) from the previous design and replace

it with another structure (mobile device). This analysis strategy lead to the

extraction of behaviour of structures and links between moves 46, 51 & 52 (chunk

I). The evaluation strategy in all chunks, also indicate the reflection that par4

utilized throughout the task.

92

● connecting problem and solution phase: In chunk I par4 utilized the synthesis and

evaluation design strategy to connect the problem phases. In chunk II and chunk

III the reformulation of function and evaluation kept connecting the problem and

solution phase. Par4 utilized the strategy of reformulation of structure and

analysis of the structure to derive the behaviour of the structure.

The design strategies utilized by par4 in each of the chunks is encapsulated in

the Figure 4.9 below. In Figure 4.9, on the left the design strategies in chunk I are

presented. The design strategy of analysis (46%) is used first, after which the

participant proceeds to formulation (10%). This is followed by reformulation of

structures (27%). This strategy is followed by synthesis (7%) and evaluation (10%).

In every chunk the sequence of design strategy and the frequency of it are captured in

the Figure 4.9. From Figure 4.9 we observe that in par4, as the design moved ahead,

the formulation strategy is less employed. However, the strategies related to structure

feature in every chunk.

Figure 4.9 Par4 design strategies across chunks

Unsuccessful participants - The conceptual design solution of Par1 only had details

for the problem ‘mood detection’. Par1 created multiple solutions for this problem

alone and couldn’t complete the overall design for the stated problem. Par3 on the

other hand generated a set of system and end user actions. But couldn’t bind them to

structures. As indicated in the Table 4.11, par3 spent a lot of time framing the

problem however couldn’t employ the other strategies. Par5 started by generating

features and behaviours of the proposed solution. Par5 utilized the solution concepts

of bit coin and crypto currency. In Figure 4.10, we present the design strategies of

par3 and par5.

93

Par3 spent a lot of time formulating functions to expected behaviours. Both

par 3 & par5 lacked the strategy of synthesis and evaluation. Par1 & par3 generated

structures but for the same sub-problem of mood detection. When we look at the

design strategies from Figure 8, we see that par3 and par5 have a high occurrence of

the design strategy of formulation of behaviour. However par3 and par5 only kept

repeating the strategy of formulation and reformulation of structures. Par1 attempted

synthesis and generated structures however it was for the same sub-problem of ‘mood

detection’. There are indications of fixation across the design moves and strategy of

formulation of expected behaviours (F->Be), analysis of structures (S->Bs) and

reformulation of structures (S->S). All the participants couldn’t generate failure

scenarios or add test cases, which could have led to generation of unique

features/structures and elimination of conflicting structures. The participants (par1,

par3 & par5) did not utilize any informal/formal sketching mechanism and instead

used statements to describe the solution.

Figure 4.10 Par3 and par5 design strategies across design moves

Summary of design strategies

Design strategies refer to employing the sequence of processes from the FBS design

framework. We observed that the participants employ different sequences of

processes during the conceptual design task. These processes differ from the

prescribed FBS design framework. The diagram 4.11 below captures the design

strategies employed by the participants. In the diagram the arrows annotated with

numbers indicate the sequence of the design strategies. The thickness of the arrows

indicates the frequency of particular design strategies.

94

Figure 4.11 Comparison of design strategies across all participants

We have summarized the design strategies below:

Successful Participants

Both par2 and par4 had the final artefact that can be placed in the category of partial

design and complete design (see Table 4.8). These two participants are considered as

successful participants in the SCD task.

● Start with known and familiar structures: Par2 and par4 anchored their

solutions with familiar systems and structures. As depicted in the Figure 4.11,

we see that both par2 and par4 have design strategies starting with structures.

● Design strategies start around structures: Par2 and par4 all along the three

chunks start with design strategy relating to structures which were analysis

and reformulation of structures (see Figure 4.11).

● Employ all design strategies throughout the design solution: Par2 and par4

employed all design strategies.

● Design strategies connecting problem and solution space: Par2 and par4

employed the synthesis and evaluation design strategy, which connected the

problem space and solution space. Par4 had a complete design due to the

connection between the different parts of the solution details. Par4 chose the

path of reformulation of functions whereas par2 chose the path of

95

reformulation of behaviours. However both of them employed the synthesis

and evaluation, which connected the problem space and solution space. Par4

had a complete design due to the connection between the different parts of the

solution details.

Unsuccessful Participants

Limited knowledge of the solution concept and experience of such systems inhibited

the participant’s progress. Par1, par3 and par5 repeatedly utilized the structures and

repeated a set of design moves throughout the conceptual design process. Among the

three participants we observed that the SCDs lacked overall view and contain some

details, however not unified (see Table 4.8). These characteristics correspond to the

category of ‘Skumtomte’.

● Start from the prescribed process of problem formulation: We see that the

unsuccessful participants started from the prescribed process of problem

formulation. Par3 spent most of the time in problem formulation. Par1 started

with formulating expected behaviour and synthesizing them to structures.

● Employ either problem formulation or solution-based strategies: The mapping

between problem and solution process did not at all occur to par3. Par5

employed the reformulation of structures, expected behaviour and function.

Par 5 chose a solution concept and spent a lot of time seeking information

regarding the concept. Both par3 and par5 lacked the strategy of synthesis and

evaluation.

● Repetition of structures/functions and behaviours: Par1 repeated the problem

formulation throughout the design and solely focused on the solution to a

specific sub-problem. Par1 fixated to a specific sub-problem and was unable to

create overall view as well as complete parts. Par1 and par3 generated

structures but for the same sub-problem of mood detection. Par5 proposed a

solution concept, however couldn’t create solution design with overall view as

well as complete parts. The focus on the same solution concept was visible in

the strategy of par5 of reformulation of structures.

4.2.2 RQ 1.b. What cognitive processes do novices use while creating software

conceptual design?

Cognitive processes employed by successful and unsuccessful participants differ

from each other. We observed similar cognitive processes between the successful

96

participants. The Table 4.11 below presents the cognitive process as defined in the

conceptual design cognition and maps it to the design strategy where it is employed.

The Table 4.11 also provides excerpts/examples from successful participants’ actions.

The first column in Table 4.11 is the cognitive process (refer Table 4.8). The second

column in Table 4.11 is the category of cognitive process. Hay et al. (2017) came up

with six categories of cognitive processes. We refer to the category that the cognitive

process in column 1 belongs to. The design strategy for which the specific cognitive

process was applicable is presented in the third column of Table 4.11. The last two

columns give examples from participant’s specific artefacts/actions that they referred

to while indicating the cognitive process.

Table 4.11 Cognitive processes in successful participants

Cognitive
Process

Category
of
Cognitive
Process

Design Strategy

Example

par2

par4

Retrieval

Long-term
memory

generation of
structures,
functions

● exploring

existing
system (card
& pin based
ATM) and
its working
first

● use case of
the existing
system is
depicted

● Aadhar API
● similar

systems
(FP-ATM ,
Apple
Pay/Google
Pay,
Startopen)

Analogical
reasoning

Creative
output
production

generation of
structures,
functions,
expected
behaviours

exploring PIN
and the
characteristics
of PIN as a 4
digit number

● FP-ATM:

payment
gateway

● Apple
Pay/Google
Pay:
location of
fingerprint
authorizatio
n/FP storage

● Startopen:
authenticati
on steps

97

Problem
Structuring
(defining
goals)

Executive
Function

generation of
functions

speed of
transaction

security

Problem
Analysis
(constraints
identification)

Executive
Function

● generation of

functions,
structures

● reformulating
expected
behaviour and
structures

fingerprint can
be replicated,
person may be
forced or
coerced into
with drawing
cash

failure cases
(Aadhar FP
collection, FP
scanner faulty)

Generating
Concepts (via
mental
simulation)

Creative
output
production

generation of
expected
behaviour

card present
with the user, no
card with the
user, threat
(end user
perspective)

connecting
mechanism
between laptop
and FP reader
(system
perspective)

Synthesis

Creative
output
production

● linking

expected
behaviour to
structure

● reformulation
of structure,
expected
behaviour,
function

-

integrating
component
diagram to
modules,
classes and
activity diagram

 In the beginning successful participants retrieved experiences and generated

structures. For example, Par2 reflects on the working of the current ATM system and

retrieves the structure of the current ATM system. Par2 additionally generates failure

cases. This indicates par2 setting problem goals and identifying constraints.

Par4 retrieved the prior experience of similar systems and associated the

structure from those systems. Identifying components from existing structures

generates the structures, which indicates retrieval from similar experiences. The other

process that par4 utilizes is to create failure scenarios and generate structure to

98

combat the test case. This indicates that structures and solution concepts are generated

via constraints identification and problem analysis. Par4 goes on to identify potential

users of the system, which indicates the cognitive process of characterizing and

structuring the problem by defining requirements.

 Among the below cognitive processes, unsuccessful participants only

generated solution concepts. The generation of solution concepts came from the result

of information seeking. All the three participants (par1, par3 and par5) had similar

processes to start the solution for design: searching for solutions/similar systems and

solution concepts. The participants were unable to utilize the information from search

results in the problem context. All the participants couldn’t generate failure scenarios

or add test cases, which could have led to generation of unique features/structures and

elimination of conflicting structures. The participants (par1, par3 & par5) did not

utilize any informal/formal sketching mechanism and instead used statements to

describe the solution.

4.3. Discussion

RQ1.a. - What are the design strategies that novices follow while creating a

conceptual design?

We observe that the novices in study 1employed strategy related to structures (Figure

4.11 & Table 4.10). This strategy is similar to the case drive approach (Jiang & Yen,

2013) as reported in the study by Jiang and Yen, in conceptual design. The case drive

approach entails making a sequence of adaptations to a detailed concept (Gasparini,

2015). Both successful participants anchored to detailed structures of existing systems

and adapted them to work in the newer situations. In the successful participants

strategies we observe are evaluation and reformulation. Both par2 and par4 created

test cases and failure scenarios to evaluate structures before integrating in the

conceptual design. This strategy resembles the strategy of expert engineers who make

evaluations of uncertain decisions before incorporating in design (Pan et al., 2010).

Successful participants created informal as well as formal representations, which are

similar to expert designer’s utilization of visualization techniques (Hay et al., 2017).

We see that in our study during the SCD task, successful participants exhibited certain

strategies and cognitive processes of expert designers.

It is known that experts spend more time formulating, structuring and

analysing the problem (Gilhooly, 1997; Atman et al., 2005; Atman et al., 2007; Dinar

99

et al., 2015). The unsuccessful participants in this study initially formulated the

problem, by generating functions and expected behaviour. In literature also we see

evidence of such behaviour (Hokanson, 2001), where it has been reported that

“novices who spent a large proportion of their time defining the problem did not

produce quality designs''. In all the participants’ linkograph we see evidence of

divergence (fore links) and convergence (backlinks), however the high interlinking

between design moves in (par1) linkograph indicates design fixation (Goldschmidt,

2017). The design fixation could be due to incomplete models of solution concepts

like artificial intelligence, bit coin etc. The unsuccessful participants (par1 and par5)

anchored towards abstract concepts. This is referred to as a schema-driven approach

(Jiang & Yen, 2013), which entails refinement of a highly abstract concept to a

detailed description. Some unsuccessful participants (par1 and par5) took this

approach and weren’t able to convert them to detailed solutions. Most of the strategies

of unsuccessful participants pertained to generation of functions, expected behaviours

and structures. The participants repeated the same design artifacts and failed to create

a comprehensive (fulfilling all the functional requirements) solution.

In answer to RQ1.b., we observe that the unsuccessful participants were

unable to trigger cognitive processes to bind FBS design elements together.

Unsuccessful participants employed information seeking cognitive processes.

Information seeking is necessarily not an unproductive task. In the case of

unsuccessful participants, they selected an unknown solution concept. For example,

par5 chose block chain as a solution concept to design the fingerprint based payment

system software. This concept was ‘unknown’ to the participant, but still par5 went

ahead and spent most of the time reading and seeking information about the concept.

As the unsuccessful participants chose an unknown solution concept for information

seeking, they were not able to associate the concepts to the design problem/solution.

Evidence of the following cognitive processes are found in the data analysis

for successful participants -

● adapt and integrate the results from the search engine into the solution of the

design problem at hand

● synthesize expected behaviours into structures and components in the proposed

solution

● generate failure scenarios and test cases to evaluate solution

100

● generate formal/informal sketches of solution to view and recognize possible

interrelations between the different design elements

When compared with the successful participants, the unsuccessful participants

were unable to trigger the cognitive processes such as simulation, association,

analogical reasoning and synthesis.

4.4. Implications for teaching and learning SCD

These results have implications for teaching and learning of SCD. Some of the

implications from results are listed below:

● Explicitly think and link FBS design elements: The learners need to be explicitly

made aware of the design elements FBS while creating a SCD. In some of the

software modeling tools and languages, like UML modeling, these elements of

FBS are present but they are separated. Successful participants in study are able to

link the FBS design elements, however unsuccessful participants are able to create

the integrated view of solution design. This integrated view (Rosenman, 1991) of

the FBS made explicit could help the learners build comprehensive and cohesive

SCDs. By explicating the FBS design elements and their relationship this

difficulty could be alleviated.

● Sketching: Instructors need to encourage learners to sketch ideas. Both the

successful participants sketched informal as well as formal representations during

the task. Unsuccessful participants instead wrote statements. Sketching allows for

interpretation as well reinterpretation of the design elements (Atman et al., 1999).

“Sketching is a critical part of the early stages of the design process, facilitating

ideation and the exploration of conceptual designs” (Karimi et al., 2018). UML in

software design has a variety of formal representation diagrams. As seen in this

study and reported in literature novices are unable to utilize the formal

representation mechanism in software design (Thomas et al., 2014). Additionally

the UML formal representation is limited as it has diagrams which provide a

single and limited view of the design i.e. either function, structure or behaviour

(Niepostyn, 2015). Teaching and learning of SCD would need to include the

integration of UML diagrams (Niepostyn, 2015).

● Anchor an existing solution: When given a software design problem, the learners

need to be taught to think about existing systems. Both the successful participants

started with an existing system or a known structure. Starting with a known

101

existing system or a structure provides an anchor to the learner, which can then be

utilized. This strategy is similar to case based reasoning (Jiang & Yen, 2013),

however in the case of SCD we could teach the learner to retrieve specific design

elements like expected behaviour or structures. This needs to be followed up by

analysis of structures or synthesis of behaviours. This strategy of mapping

functions to structures is referred to as ‘fast thinking’ (Kannengieser & Gero,

2019). This strategy of fast thinking (Kannengieser & Gero, 2019) could also lead

to design fixation, however if explicitly the learner uses this strategy generation of

design elements would not be a deterrent.

● Appropriate information seeking: The information seeking behaviour during

design tasks is recommended; however the purpose of the information seeking

needs careful consideration. The unsuccessful participants searched the internet

for similar systems and solutions, however they failed to fit it in the context of the

design problem. Novices have been known to gather lots of information, and

substituted this activity for doing any actual design work (Cross et al., 1994).

Direct search of similar systems and solutions needs a follow up task of

contextualizing the results in current problem. The successful participants’ had

other purposes for information seeking such as – disadvantages of existing

systems and cost feasibility evaluation. Goal-directed information (Brand-Gruwel

et al., 2005) seeking needs to be followed up by utilizing the result of the search in

the context of the problems.

● Developing failure scenarios and test cases: The learners make design decisions

by choosing certain structures and building on their behaviours to achieve

functions. It is known that experts provide and keep track of rationale for their

design decisions (Cross, 2004). To communicate and bring out the design

rationale learners need to learn to create test cases to evaluate the design decisions

(Cross, 2004). This process of evaluation leads them to construct rationale.

However if failure scenarios or test cases are not created the evaluation process

would not take place.

● Perspective taking or diverse point of view: When we look closely at the concept

generation activities we notice that successful participants performed that task by

taking a perspective. Par2 had an end user perspective (e.g., end user utilizes the

assigned finger to inform security and alarm is triggered) while par4 had a system

perspective (e.g. system has trouble in scanning fingerprint then need to switch to

102

the card mode). Perspective taking is considered as a designer way of thinking

(Kannengieser & Gero, 2019). Explicitly taking perspective of either user or

system and switching perspectives while generating solution concepts could result

in generation of end user behaviour and behaviour of structures.

4.5. Limitations of study 1

First limitation of this study is the utilization of the lens of cognitive processes in

conceptual design. A generic ontology of cognitive processes for conceptual design of

different design problems includes cognitive processes that happen inside the mind.

Using this lens to look at participant’s actions requires a significant amount of

inference. The inferences were a result of discussions between us. We do not have

confirmations from the participant if the inference was consistent with their mental

processes. Second, we did not include any physical behaviour such as gestures and

motor actions to infer the cognitive processes. Third, the interpretation to generate a

linkograph has subjectivity at different levels: coding for F/Be/S/Bs, determining the

links between moves and interpreting the resultant linkograph. We have tried

minimizing the subjectivity by undertaking interrator reliability checks as most

protocol studies. As both the interrators were co-located we resorted to several

iterations and final agreement, so didn’t report any kappa statistics. Fourth, all the

participants did not work on the same design problem. We wanted the participant to

choose a design problem to make them feel motivated and work at the solution for

their chosen design problem. Finally, another key limitation is the small sample size.

However the goal of this analysis was to provide deeper insight to novices’ cognitive

processes and difficulties in the context of SCD.

4.6. Reflections and Summary

The result from study 1 offers insight to novices’ processes and difficulties during the

software conceptual design task. The results from this study about the novice design

strategies and cognitive processes could be extended to engineering students having

similar characteristics as Indian urban engineering students.

In study 1, we used the software conceptual design categories to evaluate all

the participants' artefacts (Eckerdal et al., 2006). Among the five participants two of

them (par2 & par4) completed the task successfully. They both generated artefacts

ranging from most basic formal representations like component diagram, use case

diagram to the complex formal representations like sequence diagram and process

103

diagram. The design strategies of these participants indicate the presence of all the

design strategies of problem as well as solution space (Formulation, Synthesis,

Analysis, Evaluation and Reformulation).

The unsuccessful candidates (par1, par3, par5) were fixated to one of the FBS

elements during conceptual design. The FBS framework helped to identify that

fixation can happen at any of the design elements or a combination of linked design

elements. All three unsuccessful participants were unable to utilize formal

representation mechanisms naturally even though they had the pre-requisite

knowledge.

The important takeaways from this chapter and study 1 is as follows:

● Novice difficulties include inability to defixate and trigger SCD cognitive

processes

● Novices need prompts and scaffolds to get them to generate integrated SCD

solution

● Implications for teaching and learning—

• Explicitly think and link FBS design elements - FBS as a logical unit, provide

flexibility to start from anywhere

• Scaffolds/prompt to link problem & solution based strategies via evaluation

tasks

• Encourage sketching

• Anchor an existing solution - repurpose known solutions

• Appropriate information seeking, developing failure scenarios and test cases,

perspective taking or diverse point of view

104

Chapter 5

DBR 1 Design and Evaluation: Initial Solution Designs and

Evaluation
In the context of software conceptual design (SCD) it is a standard practice to create

various representations of unified modeling language (UML) to represent the solution

design (Medvidovic et al, 2002). However most of the designs created using UML

describe systems in different notations from different points of view and at different

levels of abstraction. The SCD is described by integrating the various UML

representations. In the formal curricula of computer engineering and information

technology, students learn about syntax, semantics and tools to create the formal

(UML) representations. However when students encounter open-ended real world

problems they are unable to utilize the formal representations or create meaningful

SCD (Eckerdal et al., 2006). Novices are unable to utilize multiple integrated

representations in UML for a given design problem (Thomas et al, 2014; Lakshmi &

Iyer, 2018).

Prior studies on novice difficulties in SCD (Eckerdal et al., 2006; Thomas et

al, 2014; Chren et al., 2019) indicate that novices (i) only rewrite problem statements

during the design phase, (ii) are unable to utilize formal representations of UML to

model SCD and (iii) are unable to utilize multiple UML diagrams for integrated view

of solution. In the teaching and learning of UML the novices are not provided with

learning opportunities to integrate the different representations. While examining the

nature of difficulties Chren et al. (Chren et al., 2019) have reported that novice

difficulties in UML modeling include both syntactic and semantic. In contrast expert

software designers create integrated solutions that fulfil all requirements (Petre,

2009). Creating integrated solution designs involves– i) utilization of multiple UML

representations that are linked and ii) addressing both problem and solution aspects of

the given design problem.

From the previous chapter we found the design strategies and cognitive

processes that novices employ during SCD task. Novices face specific difficulties of

fixation and lack of integration during the SCD task (Lakshmi & Iyer, 2018). For

example, in the paper (Lakshmi & Iyer, 2018) for the design problem of mood based

105

music players it was found that mostly novices only focused on mood detection. In

many cases novices’ design solution was scattered and fragmented. Novices tend to

generate solutions pertaining to fixed views of function, structure or behaviour, due to

which they create representations of a single view. Representations of a single view

do not embody the solution completely.

5.1. Integrated model building

Software conceptual design (SCD) involves model building by creating various

representations, usually UML diagrams. However most of the models created using

UML describe systems in different notations from different points of view and at

different levels of abstraction (Medvidovic et al, 2002). The different representations

together describe the solution design. Connection needs to be made between the

various representations to check for the comprehensiveness and cohesiveness of the

solution design (Niepostyn & Bluemke, 2012). Experts are able to create

comprehensive and cohesive solution designs. They are able to make implicit

connections between the various representations (Hungerford et al., 2004) and build

integrated models of the design (Petre, 2009). This task of connecting between

various representations involves a high level of cognitive load (Hungerford et al.,

2004). Additionally there exists no single representation/view, which represents the

model created for SCD (Niepostyn & Bluemke, 2012). Given this scenario, novices

are unable to make connections between the various representations. This results in

creating unconnected and incomplete representations.

5.2. Theoretical Foundations

5.2.1 Frameworks to support integrated model building in SCD

Novices are unable to integrate representations to build solution models. The

function-behaviour-structure (FBS) design framework (Gero & Kannengieser, 2014)

can be considered an appropriate framework to alleviate novices’ difficulties of

integrating representations. Though we have reasonably argued in chapter 2, section

2.6, in this subsection we revisit the argument for the same.

The FBS framework (Gero & Kannengieser, 2014) models designing in terms

of three design elements: function (F), behaviour (B) and structure (S). Functions,

describe what the design is for; behaviours, describe what it does; and structures,

describe what it is. Along with FBS elements the framework has two sets of

106

behaviours, expected behaviour (Be) and behaviour derived from structure (Bs).

These elements are connected to each other by a set of transformation processes. The

set of processes include – (1) formulation which transforms functions to expected

behaviours, (2) synthesis which maps expected behaviour to the structure, (3)

analysis of structures which leads to generation of behaviours of structures, (4)

evaluation of expected behaviour and behaviours extracted from structures, (5)

documentation which contains the formal design description. There are three types of

reformulation – (6) reformulation of structures, (7) reformulation of expected

behaviour and (8) reformulation of functions, which are done to evolve the problem

and solution together.

Philippe Krutchen (Krutchen, 2005) mapped one of the software engineering

practice processes, rational unified process (RUP), to the FBS framework. The

mapping is presented in Table 5.1 below. Each of the transformation processes in the

FBS framework corresponds to activities in the design phase. For example, the

formulation process in the FBS design framework where the expected behaviours

(Be) of the solution are extracted from the functionality (F) is termed as requirement

definition in the software engineering process. Thus, through the process of creating

FBS elements and establishing relationships between them, appropriate activity in

software design can be triggered. At the same time the learner gets to integrate the

different representations in UML. Therefore we adopt the FBS design framework as

the theoretical basis for the pedagogy of the intervention.

Table 5.1 Mapping FBS design framework to software engineering process

FBS Process Mapping FBS

elements

Software Engineering Process

(Rational Unified Process)

Formulation F->Be Requirement definition

Synthesis Be->S Design analysis and implementation

Analysis S->Bs Testing and reviewing activities

Evaluation Be<->Bs Assessment

Structural S->S Refinement of design

107

Reformulation

Behavioral

Reformulation

S->Be Requirements change

Functional

Reformulation

S->F Change in needs

Documentation S->D Implementation

5.2.2 External Representation

Design is considered as ill-structured problem solving (Dym et al., 2005) because

design problems have ill-defined goals, states and solution steps. Problem solving is a

cognitive task that benefits from distributed representation (Zhang, 1997). The

representations are split across as the internal representation in the mind of the

problem solver and an external representation. External representations that match the

task fulfil important functions during problem solving. Literature also suggests that

visual diagrams facilitate problem solving more than written notes (Larkin & Simon,

1987).

Problem solving process is dynamic in nature at and every step of the process

there is a need to manage partial solutions and which lead to the next problem-solving

step. Visualization need not be limited to representation of objects, but can be used at

every step of solution. Visualization can be used to understand the problem, model

solution, plan and make predictions. In the first step visualization can help bring out

knowledge about a problem’s structure.

In a study with professional software designers (Cherubini et al., 2007) it is

said that software developers create visualizations to understand, to design and to

communicate. Creating informal visualizations are practices that are adopted by

experienced software developers. So creation and manipulation of visualisations are

productive actions while creating designs.

In the case of FBS design framework, learners needs to represent function,

structure, behaviour and establish the relationship between them. While doing so the

learner keeps moving between the problem and solution planes. Visualization would

serve as an external representation for the breakdown process as well as effective to

and fro movement between the problem and solution planes.

108

In the proposed pedagogy aimed at novices’ for creating integrated SCD the

FBS framework can be represented as an external representation. The details of the

FBS design framework manifesting as an external representation is presented in the

next section.

5.3. FBS graph based pedagogy

The novice difficulties emerging from study 1, such as fixation and lack of

integration, motivated us to design a FBS based pedagogic intervention for software

conceptual design. The learner needs to represent function, structure, behaviour and

establish the relationship between them. The literature on external representations and

their effects on conceptual design, as discussed in section 5.2.2, led us to include

representation creation/manipulation in the pedagogy. Among the various

representations we chose a graph as the graph allows for -

• traversal/creation from top-down to bottom up is possible

• connections can be made between any pair of dyads

These characteristics of a graph provide the freedom to the novices to start

from any design element F/B/S and traverse in any direction. Additionally the graph is

a representation already known to third year computer engineering undergraduates

who are our target population. As the linking between the F/B/S design elements

happens the FBS framework design processes such formulation, synthesis, analysis,

evaluation, reformulation emerges. The FBS framework manifests as a FBS graph in

our intervention. For the design problem ‘Create a software conceptual design for a

mood based music player’, the following Figure 5.1 is an example of a FBS graph.

109

Figure 5.1 Sample FBS graph for the problem - design a mood based music player

From the Figure 5.1, we observe that the nodes are tagged as F/B/S design

elements. The creation and traversal of the graph depends on the preference of the

reader. The graph additionally does not have any structural limitation (top-down or

bottom up). These are the characteristics of the graph that make it suitable for the FBS

design framework based external representation.

Based on Chapter 2, 3, 4 the broad conjecture guiding our preliminary designs

is - “By constructing a FBS graph students will be able to create integrated models

for solution design”. In the FBS graph based pedagogy, the FBS graph is a directed

graph. The nodes are the F/B/S design elements. Specific connectors listed below

connect them-

• consists of – this connector connects the similar nodes such as F->F, B->B, S-

>S

• combines – this connector connects several similar nodes to a node e.g. in the

Figure 5.1 we see that several structure nodes combine to form ‘speech

parameter collection’.

• implemented by – this connector connects F->S, F->B, B->S

In this chapter we describe the preliminary learning interventions, and their associated

qualitative studies (Study 2 & 3). The aims of the studies are to:

• identify supports to enable novices to create integrated SCD

110

• identify learner scaffolds required to complete tasks and interactions in FBS

graph based intervention

The analysis of the above along with the evaluation of the artifacts produced by

the learner will

• inform the task design

• inform the design of the learning environment

• the tools and scaffolds required in the learning environment

5.4. FBS based learning intervention – I

“By constructing a FBS graph students will be able to create integrated solution

models as SCD”.

Based on this conjecture we have created preliminary designs and conducted two

qualitative studies with the intervention (study 2 & 3). The following learning

objectives have been set for the FBS based pedagogy for integrated (Table 4.3) SCD:

• Learning Objective 1 (a) - build a syntactic conceptual model of FBS

• Learning Objective 1(b) – build a semantic conceptual model of FBS by

interpreting the meaning of the design elements individually (F/B/S), their

relationship together and relate it to the UML diagrams

• Learning Objective 2 (a) - refine their conceptual model of FBS by linking the

FBS design elements and comparing FBS graphs based on criteria

• Learning Objective 2 (b) – utilize the scaffolds, prompts and criteria

evaluation to build strategies for creating FBS graph

• Learning Objective 3 – apply the FBS conceptual model, strategies and criteria

to create a FBS graph

The learning objectives are designed in a way that they progressively take the

learners through the FBS graph as one of the methods to create integrated SCD for a

given design problem. Learners initially build a conceptual model of FBS graph

(learning objective 1 (a) & (b)). Then they are provided opportunities to build and

evaluate existing FBS graph (learning objective 2 (a) & (b)). Then they apply the

strategies learnt to create a FBS graph for another design problem (learning objective

3). By gradually taking them through the progressive planes of doing, evaluation and

synthesis we support the novices towards building the integrated models of the

conceptual design via the FBS graph.

111

5.4.1 Task design and learner activities in FBS graph based learning intervention

I

We implemented the FBS graph pedagogy with a web page and IHMC CMAP tool.

The webpage in this intervention is static and provides information such as definitions

of the nodes (F/B/S) in the graph. It also provides the definition of different

connectors, as described in the previous section. The webpage consisted of the tabs:

phase 1 (learning objective 1), information, phase 2 (learning objective 2) and phase 3

(learning objective 3). The Figure 5.2 below shows the snapshot of the learning

intervention I.

Figure 5.2 FBS graph based intervention I screenshot

 The phase 1 tab initiates the learner to the context, learning tasks and

objectives. The content is presented as a video. The information tab gives the

definitions, examples of FBS. It also provides a set of sample FBS graphs for a design

problem (Design a fingerprint ATM). We provided two sample FBS graphs for the

same problem (fingerprint ATM). First sample FBS graph was in a top down

approach and the second graph started from behaviour nodes. There are two design

tasks in the intervention – (i) connect all the FBS elements provided for a design

problem (design a mood based music player), (ii) set their own design problem (pet

project) and create FBS elements and connect them. The two tasks (task no 2 & 3) as

seen in the Table 5.2 below were presented to the learners as videos embedded in the

webpage. The participants performed these design tasks on the IHMC CMAP tool.

112

Table 5.2 FBS graph based intervention I - task design and learner activities

Phase

No

Task Design In FBS intervention I

Problem

Task

1

Create FBS

Conceptual

Model in

Problem 1

Context

Design a Fingerprint ATM system

No specific task. The

building of FBS

conceptual model is

an implicit task

which the learner

would build by

themselves by

looking at the sample

FBS graphs

2

Connect

FBS Design

Elements in

Problem 2

context

Narrative Problem - Suraj has joined

a product development firm. The

firm encourages its employees to

take up pet projects. Since Suraj

listens to music almost every day, he

wants to design a mood based

automatic player. He has come up

with various design elements, which

are put up on the template. He has a

presentation in an hour to show his

design. Can you help him to connect

the conceptual design elements to

form a comprehensive and logical

FBS nodes in the

IHMC Cmap tool.

The FBS nodes need

to be connected in

the IHMC CMAP

tool.

113

conceptual design?

3

Create and

Connect

FBS Design

Elements in

Problem 3

context

Narrative Problem- Suppose you are

in the position of Suraj, employed in

such a firm. State your pet project

that you will choose. Decide on the

conceptual design elements and how

you would connect them to show

your conceptual design.

FBS nodes are

created and

connected. The FBS

graph is created and

connected in the

IHMC CMAP tool.

5.5 Study 2 – Qualitative Evaluation of FBS graph based intervention I

The broad RQ in this study was, “How to support novices’ while learning SCD in

FBS based intervention?” The research questions guiding this study was -

2.a After interacting with the FBS based learning intervention, what are the kinds

of FBS graphs that learners create?

2.b What difficulties do learners’ experience while using FBS based learning

intervention for SCD?

5.5.1 Method

The participants (n=2) for this laboratory study were selected via purposive sampling.

The participants of the workshop were post-graduate students with design experience.

Due to the complex nature of SCD, prerequisites for participants of the workshop

were determined. The participants were already exposed to undergraduate engineering

courses such as ‘Structured Object Oriented Analysis and Design’ (semester 5) and

‘Software Engineering’ (semester 6) in their third year of engineering. These two

courses cover topics of software design approaches, software-modeling tools,

characteristics of software solution etc. As the course contents included such

concepts, it was appropriate to consider that they had prerequisite knowledge for the

SCD activity. The participation in the workshop was voluntary.

5.5.1.1 Study procedure and design problems – Study 2 was conducted as a post-test

only study individually with two participants. The participants completed the

activities in the learning intervention as mentioned in the Table 5.2. After doing so,

the last activity was given as a post-test. Both the participants took 2.5 hours to

114

complete the activities. We conducted a reflective semi-structured interview by asking

questions such as – ‘How did you do this task? What are the difficulties that you faced

in this task?’ These questions made the participant reflect on the difficulties that they

faced during the task.

5.5.1.2 Data sources and analysis – In study 2, for RQ 2.a. we utilized the artifacts

that the participants created. We also transcribed and analysed the participant’s

interview responses to answer RQ 2.b.

To analyse the participant generated artifacts (FBS graph) we then adapted the

quality framework of conceptual model (Lindland et al., 1994) to the FBS graph.

Lindland et al. (1994) created the framework to define quality as it relates to

conceptual model. In our context the FBS graph is the integrated model of the

solution software.

 The framework of Lindland et al. (1994) attempts to evaluate the quality of a

conceptual model of design along the three dimensions of – syntax, semantics and

pragmatics. In the framework syntax refers to the model syntactic constructs and the

relationship between the constructs. Semantics refers to the meaningful relationship

between the constructs. Pragmatics refers to the ease in participation and utility of the

model. In our intervention, we consider the FBS graph as the conceptual model. With

the quality dimensions of the framework (Lindland et al., 1994) in place, we adapted

them to the FBS graph quality parameters. We have operationalized the syntactic

dimension to measure the syntactic qualities of the FBS graph. To be able to do this,

we have included the criteria of complexity, levels and connectivity. Complexity

measures the number of nodes in the graph, connectivity measures the graph

connectedness and levels measure the depth of the FBS graph. All the parameters in

syntax measure the comprehensiveness of the FBS graph. The semantic quality

measures the degree of FBS graph validity. We have operationalized this dimension

into validity, consistency and level adjacency. Validity measures the uniqueness and

correctness of each FBS connection in the graph. Consistency measures the

correctness of all the FBS branches together. Level adjacency measures that the depth

is uniform across all branches of the FBS graph. The last category, which is the

pragmatic category, measures the usefulness of the conceptual model. We have

operationalized this as the extent to which the FBS graph can be mapped to formal

UML representations such as use case, class diagram and sequence diagram.

115

 In Table 5.3, we present the FBS graph operationalization of the framework by

Lindland et al. (1994). We expand each dimension into the constructs as described in

the previous paragraph. The performance levels in each of the constructs are also

explained.

Table 5.3 Rubric for FBS graph evaluation based on Lindland et al. (1994)

Criteria Target
Performance

Needs
Improvement

Inadequate Missing

Syntax

Complexity

More than or
equal to 12
nodes each for
F, B, S.

Only 4 nodes
each for F, B,
S

Only 2 nodes
each for F, B,
S

Only a node
each for F, B

& S

Levels

Two levels in
the function,
structure and
behaviour sub
graph are
present in the
FBS graph

Only two
levels in
function and
behaviour sub
graph are
present in the
FBS graph

Two levels in
either function
or behaviour
sub graph are
present in the
FBS graph

There are no
levels in all the
three -
function,
behaviour and
structure sub
graph

Connectivity

All the nodes
in the FBS
graph are
connected

Some of the
nodes are
connected but
there exists
nodes in the
FBS graph that
are not

FBS elements
are grouped
together to
form
disconnected
forests

There are
listing of FBS
elements in the
graph space

Semantic

Validity

All FBS
branches are
unique ,
relevant to the
problem and
satisfy the

There are
unique
relevant FBS
branches.
However the
problem

There are
some repetitive
FBS branches,
which do not
satisfy the
problem

All the FBS
branches are
repetitive,
irrelevant and
do not satisfy
the problem

116

problem
requirements

requirements
are not
satisfied.

requirement.
There are
some
irrelevant FBS
branches also.

requirement.

Consistency

A combination
of FBS
elements, sub-
graphs and
branches are
not
contradictory
to one another.

A combination
of FBS
elements and
sub graphs are
not
contradictory
but some FBS
branches are
contradictory.

The structure
nodes are
inconsistent

All FBS
elements are
contradictory
to one another.

Level
Adjacency

All the
adjacent pair
of nodes in the
graphs are at
the same level

Only the nodes
in F-F & B-B
are at the same
level

Only the nodes
in F-F are at
the same level

At any level of
F, B, S there
exists no
adjacent nodes
at the same
level

Pragmatism

Formal
Realization

All the design
elements of the
FBS graph
along with
their relations
are mappable
to the
appropriate
formal
representation
(UML
diagrams)

Only some of
the design
elements of the
FBS graph
along with
their relations
are mappable
to the
appropriate
formal
representation
(UML
diagrams).

Only the FBS
design
elements but
not their
relationship
mappable to
the appropriate
formal
representation

None of the
FBS graph
elements and
their relations
are mappable
to the
appropriate
formal
representations

117

 To analyse the interview responses for RQ 2.b, we employed thematic

analysis (Braun & Clarke, 2017) to inductively come up with themes of difficulties in

the FBS based learning intervention I.

5.5.2 Study 2 - Results

In this section we begin by describing each participant’s process in the FBS learning

intervention I as case studies. We then present the results of the thematic analysis of

the participants phase and task wise in the FBS based learning intervention I. We

close this section by summarizing the answers for the research question based on the

results.

5.5.2.1 Participant 1

Participant 1 first initially looked at the phase I tab then quickly browsed through the

information page. Participant 1 moved to the phase II task in 5 mins. While doing the

task (design a mood based music player) participant 1 utilized the details in the

information tab. More particularly, participant 1 viewed both the FBS sample graph 1

and 2. However the strategy of FBS graph 1 for the induction task was chosen. The

utilization of the top down approach of FBS graph 1 as quoted by participant 1 in the

reflection interview. To create the FBS graph in phase II participant 1 took about 1

hour. Participant 1 was fixated with mood detection and populated the graph with all

the functions and structures of all mood detection as shown in the Figure 5.3. In the

syntactic criteria the FBS graph reaches the levels of target performance. However it

is also likely that the participant may have been confused to utilize all the available

nodes for the FBS graph. It is important to point out that the participant had used the

behaviour nodes only for three of the mood detection methods (voice, facial

recognition and biometric). The branch of function node ‘Biometric’ looks futile

considering the other branches. The FBS graph did not reach the target performance

in the semantic criteria. The FBS graph lacked both validity and consistency. There

was no feedback given to the participant about the performance in the task. The

participant then proceeded to the reflection task.

118

Figure 5.3 Participant1 FBS graph for phase II task in FBS graph based intervention I

 In the phase III task participant posed the following design problem

“Generation of an Adaptive Scratch programming System for students based on their

selection of type of tutorials, activities done during the tutorials, grades, attendance

and type of Practice sessions chosen. Based on this a particular type of Scratch

programming session will be selected for every student.”

While solving the above design problem participant 1 utilized one branch from

the sample FBS graph (fingerprint ATM). This could indicate reusability. However

the usefulness of fingerprint scanning in a programming environment is questionable.

The identification of functions and generation of user behaviours is evident in the

FBS graph but it is lean in terms of structures (2 structure nodes). In the syntactic

category (complexity), the FBS graph does not reach the target performance. In the

semantic category the FBS graph does not reach the target performance for the

validity criteria. This FBS graph needs improvement in the level of

comprehensiveness (behaviour, structure nodes) and does not fulfil the problem

requirements in the conceptual design. Participant1’s SCD was at the target

performance of syntax, semantics, and pragmatic categories (Figure 5.4).

119

Figure 5.4 Participant1 FBS graph for phase III task in FBS graph based intervention I

 Participant 1 began with functions and the design process of problem

formulation (F->Be). In phase II as well as phase III, participant 1 did not create the

FBS graph at the expected performance levels. In phase II, participant 1 was fixated to

a part of the problem ‘mood detection’ and utilized nodes only pertaining to that

problem. In phase III, participant 1 created unrelated branches in the FBS graph and

the FBS graph did not reflect the complete solution.

5.5.2.2 Participant 2

The participant 2 went through each of the 4 tabs individually and systematically. The

participant paused in between the video and took notes. Participant 2 also went

through the introduction tab, paused the video several times to take notes. Then went

through the information tab and spent about 15 mins in this tab. In the information tab

the participant 2 went through the definitions, connectors and FBS sample graphs (1

& 2). During this time the participant had analysed both the sample FBS graphs. After

analysing the sample FBS graphs, the participant had made skeleton graphs based on

the sample. This participant then went on to the phase II task. In the phase II task,

participant 2 started with the behaviour nodes. Participant 2 then moved to search for

mood recognition in a search engine. Participant 2 focused on behaviour nodes in the

conceptual design template. Participant 2 then searched for a relational database using

the search engine. After searching participant 2 asked whether he can add any more

nodes than the ones existing. Participant 2 then built an FBS graph (Figure 5.5)

starting with behaviour nodes first, connected them, and then moved to the structure

120

nodes. The FBS graph is lean in terms of nodes of F/B/S. So it does not reach the

target level for the criteria in syntax (complexity and levels). The FBS graph is not

detailed enough, so the semantic criteria of validity remain unfulfilled.

Figure 5.5 Participant 2 FBS graph for task 2(induction task) in FBS graph based

intervention I

After going through the phase III task video participant 2 started writing the

problem and its corresponding solution as below:

“The Problem:

Aayushi uses Uber-Pool daily for commuting to her office. Often, she engages in vivid

and animated conversations with a fellow rider/passenger but is quite hesitant to ask

for their name/phone number/business card or their profession in general. How can

the social conversation hindrance in the communication or sharing of details between

two co-riding individuals in an Uber-Pool be reduced?

Solution:

An NFC (Near-Field Communication) tag can be provided by Uber to their daily

Uber-Pool riders. The tag can be placed/attached to the back of the rider's phone.

The tag will include relevant details/information such as name, email-id, phone

number, profession, social media details. When brought in close proximity to the NFC

tag of another rider in the Uber-Pool, there will be an exchange of details between

the two individuals. Why? By use of NFC tags, a lot of time will be saved in physical

noting down of phone numbers, email IDs. Not all riders (students) will have their

business cards to be shared readily. Also, this might be useful for those who are shy

and not willing to directly ask for someone's phone number or business card. They

can just say 'Can I tag your details for taking this conversation further?'

121

To come up with the solution, participant 2 referred to the internet for UBER

NFC, NFC business cards. After getting the information, the participant drew a rough

sketch of the FBS graph. While making the rough sketch of the FBS graph participant

2 referred to the sample graphs and the connector types of FBS graph 1 more

frequently. The participant then used the CMAP tool to create behaviour nodes first.

The participant populated the CMAP interface with some behaviour nodes, then

connected the behaviour nodes. The participant then draws a structure node and a

function node and connects them. The FBS graph is lean in terms of nodes of F/B/S.

So it does not reach the target level for the criteria in syntax (complexity and levels).

The FBS graph is not detailed enough, so the semantic criteria of validity remain

unfulfilled. As seen in Figure 5.6, participant 2‘s FBS graph is neither comprehensive

nor cohesive. In all the categories of conceptual model quality (Lindland et al., 1994),

the FBS graph does not meet the target performance.

Participant 2 in task phase II as well as phase III started with the behaviour

nodes and then moved to the structure nodes. In both the phases participant 2 spent a

lot of time taking notes about the FBS conceptual model, however was unable to

translate it to a FBS graph. In both phases the FBS graph did not reflect the model of

the software solution to the respective problems.

Figure 5.6 Participant 2 FBS graph for task 3 (ideation) in FBS graph based

intervention I

In the next section we detail the results of the analysis of participants’ interview

responses to bring out the difficulties that they face in FBS based intervention I (RQ

2.b)

122

5.5.2.3 Thematic Analysis of participants’ responses

In this section we present the participants’ reflections on difficulties in the FBS based

learning intervention I phase and task wise -

Building the FBS Conceptual Model (Phase I, Task 1, Learning Objectives 1.a. & 1.b)

• To build the FBS conceptual design the participants were provided with the

definition of the terms, connectors and some sample FBS graphs for a design

problem. It is interesting to note that both the participants utilized different sample

FBS graphs for the same design problem. Participant1 utilized the top-down FBS

graph, whereas participant 2 used the sample graph 2. Participant 2 went ahead to

say that for the conceptual design task it was easier to start from behaviours, move

to structure and then functions. Participant 2 articulated that the sample graphs

only provide the idea of use case to him. He compared the use cases in the sample

graphs and then evaluated if they were applicable to him and dismissed them.

Participant 1 stated that the FBS graph helped to plan.

• Participant 1 stated that the FBS graph connectors provided were deterring to

connect the FBS elements in the conceptual design template. This indicates that

maybe the – i) FBS conceptual model that this participant built might not be the

intended one, or ii) language in the connectors are not very intuitive to the learners

which facilitates connection.

• Both the participants agreed that there was a lot of information, which needed to

be sieved through, to build the FBS conceptual model. This can also be seen in

participant 2’s process description. The participant 2 almost spent ~ 45 minutes in

the Information tab alone.

Connecting the FBS design elements (Phase II Task 2, Learning objectives 2.a & 2.b)

In this phase the tasks required the participants to refer to the sample FBS graphs and

definitions a number of times.

• Participant 1 pointed to the lack of any directions for strategy to connect the

nodes, but later found one ‘FBS grouping’. Participant 2 also followed their own

strategy of starting with the behaviours.

• Participant 1 demonstrated ‘conceptual fixation’ where the FBS graph only

consisted of different ways to implement mood detection.

• Participant 2 demonstrated planning, monitoring the tasks but mentioned that was

unable to translate it to the FBS graph. So mentioned the requirement for a ‘self-

evaluation checklist’ for the FBS graph.

123

• Both the participants mentioned that they would require scaffolds to create a FBS

graph in this task. They also mentioned that if they were to be allowed to

collaborate the FBS graph would be richer in terms of ideas.

Creating FBS design elements (Phase III, Task 3, Learning objectives 3.a & 3.b)

• Participant1 mentioned that this task gave some pointers to generate FBS

elements.

• Participant 2 stated that the reflection task made the processes explicit.

• However both participants mentioned the need for scaffolds and prompts to create

the FBS graph as a solution for the design problem.

• The participants also mention the need for a self-evaluating framework to evaluate

the FBS graph.

5.5.2.4 Answering the research questions

2.a After interacting with the FBS based learning intervention I participants are

unable to create FBS graphs at the target level performance of the rubric

In study 2, participants (n=2) went through the FBS graph based learning intervention

I. Participants need to create FBS graphs in phase II and phase III. We evaluated the

participants’ FBS graphs based on an adapted rubric (Table 5.3) of conceptual model

quality (Lindland et al., 1994). Both the participants did not create FBS graph at the

target level of the categories syntax, semantics and pragmatics.

In phase II task, participants were unable to reach target performance in semantic

category. In this task the FBS nodes were already provided to the participants and

they had to pick and connect them. In phase III the FBS graphs were not in the target

performance of both syntactic and semantic categories.

2.b While using the FBS based learning intervention I participants have difficulties in

building the FBS conceptual model and the FBS graph.

The sample FBS graph, in phase I has utilities, such as planning, and strategy building

however it does not fulfil the objectives of helping the participants’ build the syntactic

and semantic model of the FBS graph. In phase II participants have mentioned the

need for scaffolds or collaborators to link the various FBS nodes to create FBS

graphs. Similarly in phase III as well the participants have mentioned the need for

scaffolds. Participants in the study also mentioned the need for a self-evaluation

checklist for the FBS graph.

5.5.2.5 Summary of Study 2 results

124

• The participants when left alone to build the FBS conceptual model from the

definitions and sample FBS graphs picked the graph type that appealed most to

them. However the participants point out a lack of scaffolds to build the

conceptual model of the FBS graph.

• Participants mentioned the need for a collaborator to discuss ideas in phase II so

that they could connect as many nodes and create a richer FBS graph.

• Participants pointed out the requirement of an evaluation framework to be made

available, so that they can self-evaluate the FBS graph in phase II and III.

5.6 FBS graph based intervention II

The results from study 2 prompted us to redesign the task and features of the FBS

based learning intervention. In this section we describe the changes we made for this

specific intervention of FBS based learning intervention II:

Phase I - The participants in the previous study pointed out that building the

FBS conceptual model was overwhelming as there was a lot of information they had

to process. There was no assessment of the conceptual model they built which could

scaffold the process. To be able to do so we prepared a worksheet, which has a set of

question prompts. These question prompts are designed systematically to :

• Interpret syntactically and semantically meaning of the design elements

individually F/S/B: This has a set of tasks starting from listing the FBS nodes

from graph, evaluating statements with respect to FBS nodes from the graph and

describing their own understanding of FBS individually

• Interpret syntactically the relationship of F-B-S: This has a set of tasks starting

from identifying connectors and stating a FBS link from the graph

• Interpret semantically the relationship of FBS: Abstracting the relationship of FBS

Phase II – The participants in the previous study indicated that an evaluation

framework to self-evaluate would have helped them to construct a richer FBS graph.

So for this task the participants were provided with the rubric (Table 5.2) based on the

quality of conceptual model (Lindland et al., 1994). The participants were told to

apply the learning from the previous task (reflection/sample FBS graph). This was

provided to the participants to perform self-evaluation of the FBS graphs created. The

participants previously also had mentioned that they would prefer collaborators to

discuss ideas and connect the various FBS nodes. So we made this phase as a

125

collaborative phase, where all the three participants could discuss and create one FBS

graph.

Phase III – In the previous study the participant 2 had mentioned that working

on a familiar problem (pet project) was easier as they could apply the unknown

concepts of FBS and FBS graph creation to a known problem. So for this task we

retained the task of setting their own problem and constructing the FBS graph.

The Table 5.4 below captures the tasks and the features in the FBS based

learning intervention II.

Table 5.4 FBS graph based intervention II - tasks and learner activities

Phase

No

Task Design In FBS based learning intervention II

Problem

Task

1 Create FBS

Conceptual

Model in

Problem 1

Context

Design a Fingerprint

ATM system

Worksheet that has a set of

question prompts. These question

prompts are designed

systematically to

* Interpret syntactically and

semantically meaning of the

design elements individually

F/S/B

* Interpret syntactically the

relationship of F-S-B

* Interpret semantically the

relationship of FBS

2 Connect FBS

Design Elements

in Problem 2

context

Design a automatic

mood based music

player

Use the template FBS nodes to

connect them and create one FBS

graph collaboratively.

Rubric based on conceptual design

quality (Lindland et al., 1994)

adapted for FBS graph provided to

126

the participants to perform self-

evaluation of the FBS graphs

created.

3 Create and

Connect FBS

Design Elements

in Problem 3

context.

Retained the task of

setting their own

problem and

constructing the FBS

graph.

FBS nodes are created and

connected. The FBS graph is

created and connected in the

IHMC CMAP tool.

5.7 Study 3 – Qualitative Evaluation of FBS based learning intervention II

The broad RQ in this study was similar to study 2, “How to support novices’ while

learning SCD in FBS based intervention?” The research questions guiding this study

was -

2.a After interacting with the FBS based learning intervention, what are the kinds

of FBS graphs that learners create?

2.b What difficulties do learners’ experience while using FBS based learning

intervention for SCD?

5.7.1 Method

Participants - The participants (n=3) for this laboratory study were selected via

purposive sampling. The participants of the workshop were final year computer

engineering students. The participants were recently exposed to undergraduate

engineering courses such as ‘Structured Object Oriented Analysis and Design’

(semester 5) and ‘Software Engineering’ (semester 6) in their third year of

engineering. These two courses cover topics of software design approaches, software-

modeling tools, characteristics of software solution etc. As the course contents

included such concepts, it was appropriate to consider that they had prerequisite

knowledge for the SCD activity. The participation in the workshop was voluntary.

127

Study procedure and Design problems – Study 3 was conducted as a post-test only

study individually with three participants. The participants completed the activities in

the learning intervention as mentioned in the Table 5.4. After doing so, the last

activity was considered as post-test. The participants took 3 hours to complete the

activities. We conducted a reflective semi-structured interview by asking questions

such as – ‘How did you do this task? What are the difficulties that you faced in this

task?’ These questions made the participant reflect on the difficulties that they faced

during the task.

Data sources and analysis – In study 3, similar to study 2, for RQ 2.a. we utilized the

artifacts that the participants created. We used the adapted rubric of FBS graph based

on quality of conceptual model (Lindland et al., 1994). Refer to section 5.5.1.2 where

we have adequately discussed the framework of conceptual model and our

operationalization of the framework to FBS graph. The FBS graph is a conceptual

model of the software solution that the participants have created. The Table 5.3 is the

rubric of the FBS graph that is used to evaluate the final task in the intervention.

 We also transcribed and analysed the participant’s interview responses to

answer RQ 2.b. We employed thematic analysis (Braun & Clarke, 2017) to

inductively come up with themes of difficulties in the FBS based learning intervention

II. In the next section we describe the study 3 participants’ task-wise approach.

5.7.2 Study 3 – Results

In this section we begin by describing participant’s process in each of the phases of

the FBS learning intervention II. We then present the results of the thematic analysis

of the participants phase and task wise in the FBS based learning intervention II. We

close this section by summarizing the answers for the research question based on the

results.

5.7.2.1 Phase wise analysis of participant’s process

Phase 1 – Using the worksheet the participants built the conceptual model of FBS as

they were able to answer all the questions based on the FBS graph.

Phase 2 – In this task, the participants started the activity of FBS nodes connection by

collaborating with each other. After 45 minutes into the task, the participants were

fixated with the behaviours of authorization and profile creation. As seen in the Figure

5.7, the FBS graph is rich in terms of behaviours. But all the behaviours pertain only

to the functions of login and biometric. All the participants were debating and

128

discussing the behaviours and flow with regard to profile creation. This fixation led to

the task time expanding to 2.5 hours. At the end of 2.5 hours, we called for a task time

end. By the end of this the participants had only grouped function and behaviour

nodes. During the collaboration activity all the participants did not pay attention to the

rubric, which was provided, to guide connecting the FBS nodes and the final FBS

graph artifact expected from them. This FBS graph does not reach the target levels in

syntactic (complexity and levels) as well as semantic (validity and consistency).

Figure 5.7 FBS graph for phase 2 in FBS graph based intervention II

Phase 3 – All the participants chose the design problem of “A Classroom Information

and Assignment Submission system”. This was because the 3 participants were

building together the same software for their final year project. All the participants

preferred to perform this activity individually on a paper rather than the IHMC Cmap

tool. It took the participants ~ 4 hours to get to this task. This could have resulted in

the low motivation and engagement in this task. However one participant created a

FBS graph on pen and paper, at the target level of the criteria syntactic, semantics and

pragmatic (Figure 5.8 below). The Figure 5.8 indicates that participants created many

nodes for F/B/S and connected them. So the FBS graph reached the target levels in

complexity, connectivity and levels. In the semantic category the FBS graph had

enough details about the working of the solution. The design solution reaches the

target performance in all criterions in the semantic category (validity, consistency and

129

level adjacency). The FBS graph is also convertible to the UML diagrams of use case,

class diagram and sequence diagram. In the post interview, the participant revealed

that the FBS graph helped to plan and tag the ideas of the solution software design.

Figure 5.8 Study 3 - participant creating a target FBS graph based on rubric (Lindland

et al., 1994)

5.7.2.2 Answering the research questions

Based on study 3, we present the answers to the question below:

2.a After interacting with the FBS based learning intervention, what are the

kinds of FBS graphs that learners create?

In study 3, participants (n=3), went through the FBS graph based learning intervention

II. In phase II we see that participants could only connect function and behaviour

nodes. This indicates that even though all the FBS nodes are provided participants

tend to begin from problem formulation (F->Be). Additionally we see that even

though the phase II task was collaborative participants did not create a FBS graph at

the target performance of syntax, semantic and pragmatic categories. In phase III one

out of the three participants created a FBS graph at the target level of all the

categories.

2.b What difficulties do learners’ experience while using FBS based learning

intervention for SCD?

130

In phase II, where the participants had to create a FBS graph from a given set of nodes

fixation was a deterrent. The participants were fixated towards the functionalities of

login and biometric authentication. These functionalities are only a part of the

functionalities in the solution design.

In phase II and III the participants did not utilize the rubric provided for this

task to evaluate the FBS graph during the task. The rubric would have provided the

necessary pointers to create a rich FBS graph. From participants' interview responses

we come to know that the rubric usage needs to be nudged. Participants also

mentioned that they need scaffolds to create a new FBS graph specifically in phase

III.

5.8 Summary of results of study 2 and study 3

Study 2 is based on the FBS based learning intervention I. In this study participants

failed to create an FBS graph in the target level of the syntactic and semantic

categories of the rubric (Table 5.3). Based on the results from this study we made

changes to the phases in task design and provided additional tools. This led to the FBS

based learning intervention II. Study 3 is based on this learning intervention. In study

3 there is a slight increase in performance of the participants in creating FBS graphs.

However, participants still need scaffolds and prompt to create FBS graphs at target

level of the rubric (Table 5.3). So we pay attention to participant responses to the

problems that they face in each of the phases of the FBS based learning interventions.

We captured participants’ response to semi-structured interview questions on

the difficulties in the FBS graph based intervention II and I. These responses were

transcribed and thematic analysis was done based on the tasks in the interventions. In

each of the studies the difficulties in the tasks are captured in the Table 5.5 below.

Table 5.5 Difficulties that novices faced in FBS graph based learning intervention I &

II

Task # Difficulties that novices face in FBS based learning intervention

 Study 2 Study 3

Task 1 Building FBS based

conceptual model based on

sample FBS graphs

-

Task 2 • Strategies to create and • Strategies to create and

131

Task 3 connect the FBS elements

in the FBS graph

• Self-evaluation

tool/instrument to

evaluate the created FBS

graph

connect the FBS elements in

the FBS graph

• Nudge to utilize the rubric to

self-evaluate the created FBS

graph

In this research cycle, we created FBS based preliminary learning

interventions and conducted small qualitative laboratory studies (study 2 & 3). The

aim of study 2 and 3 was to support novices’ while learning SCD in FBS based

intervention. The results from this study provide the input to the features and task

design for the next version of the FBS based intervention.

However before we summarize this chapter we need to be cognizant about the

limitations of study 2 and 3, which are discussed in the next section.

5.7.1 Limitations of study 2 and 3

The criticism that the sample in both the studies are small to make decisions about the

pedagogy could arise. In study 2, the sample consists of post-graduate students with

design experience. In study 3, the sample consisted of final year computer engineering

students. The sample in both these studies consists of people with sufficient software

design experience. So the difficulties that they would have had would be found across

the undergraduate engineering population as well. So the findings could be

generalized to the extent of undergraduate computer engineering students with limited

software design exposure. However, there could have been different design decisions

across study 2 and study 3 findings. The design decisions that we have taken are

based on the FBS graph based pedagogy and the principles we derived from the

theoretical foundations as discussed in section 5.2.

5.7.2 Chapter Summary

The literature on expert’s conceptual design and specifically software design

processes inform us that creating, evaluating and refining the integrated view of the

solution leads to good design. Additionally, we chose the FBS design framework

(Gero & Kannengieser, 2014) to support creation of conceptual design. In the learning

intervention we manifest the framework as an external representation namely the FBS

graph. So, FBS graph based pedagogy is the basis of our learning intervention. In FBS

132

graph based intervention I and II, concept map and worksheet are the pedagogical

tools. From our studies (study 2 & 3) we found the difficulties that novices have with

the FBS graph based interventions. The results from the studies helped us to come up

with the features of a FBS graph based technology enhanced learning environment

(TELE). In the next DBR cycle we utilize these findings and integrate it into a

learning environment. We then evaluate the learning outcome, in this case the SCD

that learners create after interacting with the learning environment.

The Table 5.6 below maps the learning objectives (section 5.4), the tasks and

the corresponding features in the TELE. In the Table 5.6, we also conjecture how will

the learner learn and the learning design principle that could arise. We discuss these

conjectures and principles in the next chapter in detail.

Table 5.6 Mapping the learning outcome, principles and features in the learning

environment

Learning
outcome

Task

Feature in
TELE

How will the
feature
facilitate
learning?

Learning
Design
Principle

Interpret
syntactically
and
semantically
the meaning of
FBS graph

Task 1

• Sample

FBS graph
as an
interactive
simulation

• Worksheet
questions

FBS graph
will be
systematically
interpreted to
answer the
worksheet
questions

• Authentic

Problems
• Worked

Example
• Question

Prompts
to
systematic
ally
interpret
the
sample
FBS
graph

Evaluate and
modify the

Task 1

Evaluation of
FBS graph

Evaluation
and

Self-evaluation
would promote

133

FBS
conceptual
model

based questions
in the
worksheet

refinement of
self’s FBS
conceptual
model

self-regulation
(Cho, 2004)

Apply the FBS
conceptual
model to
connect given
FBS

Task 2 & 3

• Rubric

provided to
evaluate and
guide the
FBS graph.

• Performanc
e indicators
for the
desired
characteristi
cs of SCD

The evaluation
with the rubric
helps the
learner to
analyze the
FBS graph for
desired
characteristics
of SCD

Scaffold to
guide the
connection of
given FBS

Create and
Construct the
FBS graph

Task 2 & 3

Prompts and
scaffolds to
create FBS
graph via a
pedagogical
agent

Cognitive
tools to trigger
the cognitive
processes of
mental
simulation,
abstraction
and associatio
n

Cognitive
Tools for
Structure,
Behaviour and
Function

Reflection and
planning tasks
and questions

Opportunities
to abstract the
process of
conceptual
design to be
made
applicable in
other similar
design
problems

Metacognitive
Prompts for
planning and
monitoring

134

Chapter 6

DBR 2 Problem Analysis and Design of ‘think & link’

6.1 Summarizing reflections from DBR iteration 1

In the problem analysis phase of DBR 1 (chapter 4) from study 1, we found that

novices have difficulty in utilizing formal representations such UML diagrams. Some

novices were unsuccessful in completing the SCD task. Their design solutions

addressed only a specific sub-problem, as they were fixated to a particular structure,

function or behaviour. The successful novices in study 1 employed all the design

strategies in the FBS framework and some expert-like processes such as retrieval and

anchoring to known structures, mental simulation of behaviours (end user & system).

The difficulties in novices motivated us to design a FBS based pedagogical

intervention for software conceptual design (chapter 5). The FBS framework

manifests as a FBS graph in our intervention. We created two preliminary learning

interventions based on FBS graph pedagogy. Study 2 and 3 were qualitative case

studies using the preliminary interventions. The results from the studies informed the

pedagogical design and features of the learning environment in this iteration. In this

iteration we design and develop a learning environment based on the findings from

earlier cycle. We then evaluate the learner’s outcome after they have interacted with

the learning environment.

The learning objectives for the FBS based pedagogy for creating integrated

SCD are identified in chapter 5 (section 5.4). To achieve learning objective 1, from

study 2 we found that learners are unable to implicitly build syntactic and semantic

models of FBS graph. So to scaffold and help novices to be able to do this in study 3

we introduced a worksheet, which consists of questions about the FBS graph at

various levels -list, evaluate and abstract. These questions guide the learner through

the FBS graph thereby building a syntactic and semantic model of FBS (learning

objective 1). For learning objective 2 and 3, we realized that the tasks, activities and

scaffolds in FBS based preliminary learning interventions II and I were not enough.

So in this iteration, we focus on the design and development to address these learning

135

objectives. The achievement of all the learning objectives manifests as integrated

SCD. In this iteration we have focussed on the learners’ SCD creation post the

intervention. To design the learning environment we reviewed the literature of

problem solving and design, which are elaborated in the next section.

6.2 Literature review

To build the scaffolds and features in the learning environment that will support

teaching and learning of integrated SCD we reviewed the literature in worked

examples, improvable models and metacognition. In the next paragraph we present

our reasoning.

 From our study 2 and 3 we identified that FBS model building needs to be

supported. FBS model building, as a graph, is not very explicit for learners. Since

learners encounter the FBS conceptual model for the first time during the

intervention, we provided a sample FBS graph as a worked example. However from

study 2 we see that a static worked example does not help the learner abstract the

conceptual model of FBS. So with the worked example, we need to build interactions

around the FBS graph and make it an improvable model. Using the sample FBS

graph in the learning environment, as an improvable model, the learners are expected

to progressively build on it. We also want the learners to abstract the process of

building FBS graphs, so we provide opportunities for evaluation, reflection and

planning. The opportunities for meta-cognition provided to learners will help them to

abstract the FBS based SCD creation process. So we refer to the theory of worked

examples, improvable models and metacognition. This would help us in identifying

relevant features and activities in the learning environment.

6.2.1 Worked Examples

The instructional studies (Atkinson et al., 2000) into the use of worked examples in

the teaching of problem solving, describe a typical learning process. Given the

worked example, learners begin to learn to solve by analogy. They refer to the

examples and relate them to the problem to be solved. After relating, the learners

abstract the rules and knowledge to build their own strategies. The learners employ

and test their strategies multiple times and make adjustments to them.

Worked examples are instructional devices that provide an expert's problem

solution for a learner to study (Atkinson et al., 2000). As instructional devices, they

typically include a problem statement and a procedure for solving the problem;

136

together, these are meant to show how other similar problems might be solved. In a

sense, they provide an expert's problem- solving model for the learner to study and

emulate. Examples typically present solutions in a step-by-step fashion. In many

cases, worked examples include auxiliary representations of a given problem, such as

diagrams. Since viewing of worked examples is a passive process, questions arise

about the transferability of problem-solving skills acquired from merely viewing

worked examples (Chi & Glaser, 1985).

Worked examples have been utilized in the teaching and learning of

programming (Mark Guzdial, 2012). In his popular blog in CS education

(computinged), Mark Guzdial famously said, “Practice is better for learning facts,

worked examples are better for learning skills”. Additionally, Morrison (2020) adds

that, “Worked examples give learners concrete examples of the procedure being used

to solve a problem, showing the explicit steps in the problem-solving process”. To

support learners to construct FBS graphs, in our learning environment we employ

worked example support. We provide FBS graph to learners for building conceptual

models of FBS.

In the FBS graph based pedagogy, we have provided scaffolds to facilitate this

process using worked examples. The worksheet has questions that provide the

learners opportunities for referring to the FBS graph nodes and connectors then

abstracting their syntactic and semantic relationships. Along with the worksheet

questions, the FBS graph is provided as a manipulable simulation. In the next section

we present the literature on specific cases of worked examples in engineering design

known as improvable models.

6.2.2 Improvable Models

Improvable models are designed to be used as primary generators (Darke, 1979;

Lawson, 2006) to help students as they start solving an engineering design challenge.

These models provide the initial example idea that students can use as a seed for new

ideas. One example of an improvable model is the suboptimal system (SS) seed

model. It represents suboptimal design due to inefficient design decisions that

encompass all parameters of the complete system being represented by the designed

model. Students can critique this example model and use it as a seed for iteratively

designing an optimal model. The SS seed model visually represents all the design

parameters and constraints that define the system. This visual representation will

137

likely provide an essential scaffold for the students by allowing them to inspect these

elements and productively use them for making trade-off decisions, scaffolding their

engagement with the disciplinary practices while they are solving the engineering

design challenge (Quintana et al., 2004).

According to Wood et al. (2001), improvable models can be used iteratively

for understanding the current solution, which is essential for modifying, redesigning,

and generating an optimized solution, by students while solving an engineering design

challenge. Similar to worked example models, improvable models present sample

solutions that will likely guide students' attention by visually representing all the

design parameters, both the input and outcome parameters of an engineering system,

required for solving the challenge.

The FBS graph is initially provided as a worked example to the learners as a

scaffold for them to build the FBS conceptual model. In the next step, the FBS graph

is provided as an improvable model. An improvable model of a FBS graph would be a

scaffold for the learners as they can inspect the visualization to add their own ideas as

FBS elements (Dasgupta, 2019). The FBS graph acts as a visualization that can be

manipulable by the learners. For the FBS graph based pedagogy, in phase I the

manipulations would need to support the building of FBS conceptual models in the

learners. The interactions with the FBS graph need to be designed in such a way that

the learners are able to inspect the FBS graph elements. In phase II learners build on

the existing FBS graph by adding their solution ideas as FBS graph elements. By

editing the FBS graph learners build strategies for creating integrated solution design.

6.2.3 Role of metacognition

Investigators have highlighted that metacognition plays an important role in problem

solving, social cognition, and various types of self-control and self-instruction

(Flavell, 1979). Research has shown that students must be scaffolded in order to

articulate and reflect on their inquiry (Quintana et al., 2004) and problem solving

(Kim & Hanna, 2011). Elaboration question prompts have been successfully used in

ill-structured problem solving to get students to elaborate and explain their thinking

(Ge & Land, 2004).

In order to create integrated SCD learners must, at each phase of the FBS

graph building process, evaluate their FBS graph for their utility to give the desired

conceptual design and plan the next modelling tasks (Jonassen, 1997). This is also

138

consistent with the multilevel and multifaceted model of metacognition (Efklides,

2008). According to Efklides (2008) metacognition model, for effectively achieving

learning objectives of a cognitive task at doing level, the learner must explicitly do

metacognition tasks like evaluation and reflection after every few cognition tasks.

Based on the literature of metacognition in problem solving and design we have

summarized the metacognition features that need to be incorporated for teaching and

learning of software conceptual design:

● There exist progressive levels/planes of cognition – doing, evaluation, and

synthesis. Learning of FBS based software conceptual design will happen

when a learner is explicitly taken through all three levels of cognition.

● To be able to abstract the process of FBS software conceptual design learners

need to be provided opportunities for metacognition like planning and control.

From the theory of worked examples, improvable models and metacognition we have

identified scaffolds and tasks to be incorporated in the learning environment. In the

next section we discuss the tasks and learner activities designed.

6.3 Task design and learner activities in ‘think & link’ prototype

Based on the study1, study 2; study 3 findings and the review of literature in this

chapter we redesigned the FBS based learning intervention. We named the learning

intervention as ‘think & link’. ‘think & link’ has evolved from the FBS based learning

interventions II and I described in chapter 5.

The goal of ‘think & link’ is for the learners to be able to create integrated

SCD. Integrated term refers to the appropriate utilization of respective UML diagrams

and their links with each other. One of the routes that we have undertaken is that

learners build FBS based conceptual model of the solution via a FBS graph. By

building a FBS graph learners will be able to create integrated SCD. ‘think & link’

has three phases. The Figure 6.1 below captures the three phases in ‘think & link’.

The learner task sequence is designed based on the learning objectives elaborated in

chapter 5 (section 5.4).

139

Figure 6.1 Task design in 'think & link'

In phase 1 the problem context (mood based music player), a non-editable

FBS graph and a series of questions (activity) is provided to the learners to construct

the FBS conceptual model (learning objective 1). In phase 2, the learners are inducted

to edit the FBS graph and evaluate it in the same problem context (learning objective

2). In phase 3, the learner creates a FBS graph in the new problem context set by them

(learning objective 3).

 ‘think & link’ consists of tasks at progressive planes of cognition – doing,

evaluation and synthesis. These planes of cognition directly correspond to the phase 1,

2, and 3 in ‘think & link’. The tasks are sequenced such that the learners are explicitly

taken through all planes of cognition. As depicted in the Figure 6.1, the learning tasks

are interspersed with planning, reflection and evaluation prompts and tasks. This is

done to trigger metacognitive processes of monitoring, control and planning. The

Table 6.1 captures the different phases, the features that the phase offers and the

activities that the learner needs to complete.

140

Table 6.1 'think & link' – task design and learner activities

Task

Feature in TELE

Learner activities

Task 1

• Sample FBS graph as an

interactive simulation
• Worksheet questions

Learners’ have to refer the FBS graph
and complete the worksheet questions

Task 2

• Recap of the FBS

relationship abstraction

Learners’ refer to the worksheet activity
and form the sentences that abstract FBS
design elements and their relationship.
For example, learners need to create
sentences such as – “Functions
implements behaviour which is utilized
by structure”

• Sample FBS graph as an

interactive simulation
• Prompts and scaffolds to

create FBS graph via a
pedagogical agent

• Information videos on
FBS and FBS graph

Learners’ edit the given FBS graph to
add F/B/S elements and connect them

• Rubric provided to

evaluate and guide the
FBS graph.

• Performance indicators
for the desired
characteristics of SCD

• Reflection and reasoning
questions to abstract

Learners’ evaluate the FBS graph based
on the rubric.
Learners’ reflect on the evaluation with
the rubric to analyse the FBS graph for
desired characteristics of SCD.

Task 3

• Text box to provide the
problem that the learners

Learners’ edit the problem statement and
create FBS graph by adding F/B/S

141

intend to create SCD for
• Prompts and scaffolds to

create FBS graph via a
pedagogical agent

• Information videos on
FBS and FBS graph

elements and connecting them

• Rubric provided to

evaluate and guide the
FBS graph.

• Performance indicators
for the desired
characteristics of SCD

• Reflection and reasoning
questions to abstract

Evaluate the FBS graph based on the
rubric. Reflect on the evaluation with the
rubric to analyze the FBS graph for
desired characteristics of SCD.

Task 1, 2 & 3

• Planning questions

before every task

Opportunities to abstract the process of
conceptual design to be made applicable
in other similar design problems

We created a prototype, conducted heuristic evaluation for usability,

redesigned the interface and then took it to students for evaluation. The screen shots

of the initial prototype and features are presented in the Figure 6.2, 6.3, and 6.4

below.

In phase 1, the sample FBS graph for a design problem (mood based music

player) is provided. As shown in the Figure 6.2, the sample FBS graph, the

pedagogical agent along with the prompts to complete the task is shown to the

learners. The task in phase 1 is to complete the worksheet questions, which is

provided after clicking on the next button.

142

Figure 6.2 Task 1 - FBS graph as a worked example in ‘think & link’ prototype

 In phase 2 the learners are first provided with space to recap their FBS

conceptual model, which is the outcome of phase 1. As shown in the Figure 6.3, the

phase 2 starts with the activity of reflection of the FBS conceptual model. A word

cloud consisting of various FBS elements and the connectors are provided. Learners

need to create sentences using the words from word cloud that reflect the FBS

conceptual model.

Figure 6.3 Task 2 - Recap of FBS conceptual model in ‘think & link’ prototype

 After completing the reflection activity, in phase 2 learners would need to add

the FBS nodes, connectors and evaluate the FBS graph. As seen in Figure 6.4,

learners are provided with the rubric as a wheel. The performance indicators for a

specific target are provided just below the wheel. The target levels are provided just

143

below the FBS graph space. The learner needs to click on the criteria wheel option,

select the target level, look at the performance indicators and choose the right level.

Once the learner completes this, they would have to provide a reason for their choice

and plan for the changes that they would make in the FBS graph. The learner can also

edit the FBS graph and move on to the next evaluation criteria.

Figure 6.4 Task 2- Evaluation of FBS graph based on the rubric in ‘think & link’

prototype

 Phase 3 had similar activities as in phase 2, however the design problem

needed to be set by the learner. The learners’ set their own design problem and start

creating a new FBS graph from a blank graph area. The learners need to create a new

FBS graph and evaluate it (see Figure 6.4). Across the phases, the learners are

provided with the prompts from pedagogical agent based on the context of the task

and their performance. So the agent is adaptive. The learners are also provided with

planning and reflection questions. To complete the task in each phase learners are

provided with information in the form of videos. All the videos are available in the

information page of ‘think & link’.

6.4 Heuristic evaluation and user experience redesign of ‘think & link’ prototype

We designed and created the learning environment, ‘think & link’ incorporating the

task structure, learner activities and features as discussed in the previous section.

We performed a heuristic evaluation for usability and redesigned the learning

environment.

144

Learner’s engagement with the learning environment needs to be designed for

“non-automatic, effortful thus metacognitively guided process” (Salomon et al.,

1991). Design of an online learning environment can influence the student learning

process and experience (Gearing, 2012). Poor design and usability are found to be

detrimental to learner motivation, which then leads to high rates of attrition (Minocha

& Sharp, 2004; Ssemugabi & De Villiers, 2010). However, designing tasks to

facilitate learning is distinctly different from designing for basic user tasks.

Traditional user-centred design is focused on helping people complete tasks they

already know whereas learner-centred design focuses on helping understand novel

knowledge (Quintana et al., 2008). Given that the content is highly intertwined in the

context the application of best practices in learner-centred design becomes

challenging. It is important that the learning environment is evaluated for usability.

There exist various usability evaluation methods. These methods are helpful to

understand the problems in the design, which creates difficulties for learners and

impacts their learning performance. We used one such popularly used usability

evaluation method- heuristic evaluation. Heuristic evaluation involves experts to

evaluate a user interface based on predetermined usability criteria (Neilsen, 1992).

After heuristic evaluation, specific usability problems were identified and the redesign

of the user experience in ‘think & link’ resulted in new user interfaces. The procedure

for evaluation and redesign is as depicted in Figure 6.5. It starts with understanding

the users of the learning environment. In the case of ‘think & link’, undergraduate

computer engineering students are the users. After profiling the users, the next step

was to set usability goals for the learning environment. There are available standard

tools created by HCI designers such as Usability Goal setting Tool (Joshi, 2009). We

utilized the tool to set goals and evaluate the designed interface against them. A

usability expert did the evaluation. After the evaluation the interfaces that violated the

goals were redesigned based on design heuristics. We collaborated with a usability

expert with educational and industry experience in usability. The details of each step

are presented below in the next subsections.

145

Figure 6.5 Process of heuristic evaluation and redesign

6.4.1 Product and User profiling

The process begins with the designers creating the product profile and one or more

user profiles. These form the input for the usability goal setting. The product profile

contains questions related to the product domain, platform, cost, and targeted users.

By answering these questions, the goal of the learning environment and its intended

usage was made explicit. This step helped define ‘think & link’ as a product in the

learning domain, available free of cost for users having internet access with a desktop.

The user profile involved questions related to end-users’ age, technology savviness,

and the expected frequency of use. This step provided reconfirmation that third and

fourth-year computer science engineering undergraduates were the end users of ‘think

& link’. Additionally, by answering these questions the designers were able to

identify the minimum criteria for qualifying as a user and any situation that

disqualifies them. ‘think & link’ would require the learners to have prior knowledge

of UML diagrams. The deterrents for the usage of ‘think & link’ are lack of internet

and a desktop/laptop.

6.4.2 Usability goal setting

The next step in this process was to set and prioritize the goals of the product. By

goal, we refer to the criteria against which the product will be evaluated. E.g., “think

& link provides scaffolds and affordances to create an integrated FBS graph”. We

utilised an available tool for usability namely, Usability goal setting tool (UGT). UGT

helps specify high-level usability goals and break them down into concrete,

measurable goal parameters (Joshi, 2009). UGT provides a list of 30 goals consisting

of 6 categories – learnability, speed of use, ease of use, ease of communication, error-

free use and subjective satisfaction. We adapted the list to our context and added a

goal each in the category ease of communication and error-free use. We added 2 more

goals in the new category of teachability. So in total, we had a set of 34 goals in seven

categories.

146

 Once the goal list was ready the usability expert and I assigned weights (0-5)

to the goals. The weights indicated the priority of the goal for the product. The higher

goal weight indicated the criticality of the goal to the product. We individually

assigned the weights to the goals based on the profiling (product & user) and the

teaching-learning objectives. After individual weights assignment, we had several

rounds of discussion and arrived at a list of goals and their goal assignments for ‘think

& link’. The list of goals and their criticality assigned is presented in Figure 6.6

below.

6.4.3 User interface evaluation

For the redesign of the actual environment, we considered all goals with weight above

3. These goals were a unique selling point (5) and critical (4 & 3) and are

recommended for product evaluation. Each of the screens was evaluated against the

goals and the goals that misaligned were noted down.

Figure 6.6 Usability goal setting

6.4.4 User interface redesign

Based on the defined list of goals, in each of the screens, the design changes were

recommended. For example, in Figure 6.7, we can compare the old and redesigned

version of a screen. Here the goal ‘user should be able to navigate quickly and easily’,

was found to be misaligned. One of the major challenges was to design a navigation

menu, whose conceptual model could be quickly grasped by the learner. For instance,

the next/previous button in the old design was recommended to go along with the

147

main tab menus in the top such that the sub-menus could form a branched structure.

Considering the goal category of ‘ease of communication’, the buttons were also

given contextual labels like intro/task instead of labels like next/previous. Similarly,

all the design changes were then collated to create the redesigned interface. In the

next section, we discuss the changes for the misaligned goals.

Old screen

Redesigned screen

Figure 6.7 Introduction screen, before and after heuristic evaluation and redesign

6.4.5 Redesigned user interface

The usability expert examined each screen of the application for violation of the

usability goals mentioned in the previous section. For the redesign of the interface,

each element on the screen was manipulated for its size, shape, and colour, to build an

148

optimized visual hierarchy. Some of the changes done in the interfaces for the

category of goals are discussed in Table 6.2. The prototype of the redesigned

interfaces was created on the tool Adobe XD. The newer interfaces are available in

the link - https://thinknlink.tech/

Table 6.2 User experience redesign in select screens

Category of Goals Specific Changes

Learnability ● Creation of conceptual model with a visual

hierarchy built for screens and custom colour

palette for consistency across the product model

● Creation of phase and task information structure

● The affordance and emphasis provided in the

selected elements of the screen indicate the actions

that the learner could perform (e.g. button labels)

Speed & Ease of use ● Removal of unnecessary information in the pages

which distracts the core function to be performed

on that screen

● Task pages do not have a scroll down. All the task

information is provided on the fixed screen.

● The consistency and colour mapping of the buttons

guide the learners to take the appropriate action in

the FBS graph screen

Ease of

Communication &

Error-free usage

● Task Information provided by the pedagogical

agent to the learner is given in small sentences and

also grab the attention of learners

● Task progress indicators in phase II & III graph

evaluation wheel convey the progress and task to

be completed

● The layout of the multiple groups of elements on

the evaluation screen is positioned to direct a

149

specific flow of action

6.5 Features in ‘think & link’

‘think & link’ is a web-based, self-paced, FBS framework based learning environment

for teaching and learning of integrated SCD. ‘think & link’ consists of scaffolds for

learners to create, modify and evaluate a FBS graph for design problems. The task

sequences in ‘think & link’ are based on the learning objectives (see section 5.4 in

chapter 5). There are three phases in ‘think & link’ (see Figure & Table 6.1).

‘think & link’ has the following features:

● FBS graph manipulator and editor – This feature is present throughout the

three phases. However in the first phase alone the editor options are not

provided to the learners. The graph manipulator displays the FBS graph for the

problem with color-coded nodes (see Figure 6.8). The clickable options on the

right panel help the learner to display similar nodes, links and adjacent nodes.

In the edit mode the right panel extends clickable options to add function,

structure and behaviour nodes. Dragging the cursor from the source node and

placing it on the destination node creates the link. The link can be annotated

with tags - ‘implemented by, consists of, and combines’ by right clicking on

the link. Using the activity, manipulator and clickable options in the

introduction phase learners build FBS conceptual models. This model helps

the learners conceptually link F/B/S together. By editing FBS graphs learners

build strategies to create and establish links between F/B/S for a given design

problem.

150

Figure 6.8 FBS graph editor options

● FBS graph evaluator – This feature is present in the phase 2 and 3. It aids in

the self-evaluation of FBS graphs based on criterion of syntactic, semantic and

pragmatic categories. The criteria of the conceptual model were adapted from

Lindland et al. (Lindland et al., 1994). The categories include properties like

connectivity, complexity, consistency, validity, consistency, levels and formal

realization. All these parameters are adapted and presented in the context of

the FBS graph. The evaluation categories are presented as a clickable wheel

(see Figure 6.9). Clicking on an evaluation criteria the performance levels

(meets expectation, needs improvement, inadequate, missing) are presented as

radio buttons. The explanation of the criteria and the respective selected

performance level is presented to the learner. The learner has to select the

performance level after evaluating the FBS graph. The learner needs to

support the performance level choice with reason and state the corresponding

changes in the FBS graph that the learner would make. The learners’ self

evaluate the categories of SCD in the context of the FBS graph. Learners are

also required to provide reasoning for the evaluation and reflect on the

changes in the FBS graph.

151

Figure 6.9 FBS graph evaluator options

● Resources for Information - At each and every step of tasks in ‘think & link’

there are videos, which contain task specific knowledge required to complete

the task (see Figure. 6.10). Additionally there is also a ‘Information’ page in

the learning environment that includes a collection of videos about the context

of the learning environment like SCD, FBS framework etc.

Figure 6.10 Features of 'think & link'

● Planning questions – It is important for the learner to reflect, evaluate and

monitor their process during design. By doing this learners will be able to

152

imbibe the process of SCD along with the strategies. As mentioned earlier the

learners are taken through the three planes of cognition – doing, evaluation

and synthesis. In the planning activity the learners are required to reflect on

the task ahead and plan (see Figure. 6.10). Example questions that they

encounter are – What will you do in this phase? How will this task be useful

for creating software conceptual designs?

● On the left side of ‘think & link’ (see Figure. 6.10) a vertical column is

dedicated to the pedagogical agent CASA (conceptual design assistant).

CASA is present all through the phases. CASA provides procedural prompts

related to the task that the learner is currently performing. The prompts

provided by CASA are adaptive and are dependent on the learner’s actions and

progress in the task. The learner’s task progress is monitored and CASA

provides appropriate scaffolds to complete the task at the desired level. CASA

also provides cognitive prompts, which aid the learner in creating the FBS

design elements and linking them. The Table 6.3 below provides a sample of

prompts from each phase based on learner’s actions.

Table 6.3 Sample of CASA prompts in each phase of ‘think & link’

Phase

Learner’s
action

CASA prompt

Nature of prompt

Phase 1

First time the
'FBS graph' tab
is enabled

i. Here you will get to look at the

FBS graph to answer questions in
the Worksheet.

ii. View the 'FBS Graph - Video' to
get to know what is a FBS graph.

iii. Click on 'more' to get additional
prompts on FBS-graph

Information
prompt

next button
(Task 3 in
activity) &
Task button

Use the previously identified FBS
(Function, Behaviour, Structure)
design elements, definitions and your
understanding of FBS to answer the
question.

Procedural
prompt to
complete tasks

153

Phase 2

FBS graph
editing task &
> 3 Function
nodes created

i. You might want to list the

structures that will implement the
functions

ii. Imagine how possibly the end user
will interact with the system with
such capabilities

i. Cognition

prompt to
associate
structures

ii. Cognition
prompt to
simulate
behaviours

Phase 3

FBS graph
‘Task’ tab
If (> 5 mins
time in the
FBS graph
time in the
FBS graph &
no action) then
trigger

i. Recollect experiences with similar

systems which you have
encountered some mood basic
music apps or music speaker

ii. Try recollecting some algorithms
or physical components that were
presented in those systems

iii. How are those
systems/applications/algorithms/co
mponents different from the
present problem?

iv. Who is the end user of this
application? and How will the end
user interact?

i. Cognition

prompts to
create
Function
nodes

ii. Cognition
prompts for
structure

iii. Cognition
prompts to
adapt/reuse
known
structures

iv. Cognition
prompts for
simulating
behaviours

6.6 Summary

To alleviate the novice difficulty in SCD we designed and developed a function-

behaviour-structure (FBS) design framework (Gero & Kannengeiser, 2014) based

learning environment - ‘think & link’. The goal of ‘think & link’ is to scaffold and

help novices create integrated solution designs for software design problems. ‘think

& link’ is implemented using Javascript, MySQL, and PHP. ‘think & link’ is available

in this link https://thinknlink.tech/. To access ‘think & link’ student interface, create a

login id or this student credential can be utilized: user id – Prathiksha, password –

seokjin. To access the teacher interface in ‘think & link’ this credential can be used:

user id – etiitb, password – thinknlink2019.

154

In ‘think & link’ the FBS design framework manifests as a manipulable graph

known as the FBS graph. ‘think & link’ consists of activities grouped as three phases

and provides scaffolds/prompts to complete them. Based on literature about experts

design processes, theoretical frameworks and studies 1, 2 and 3 we propose the

following conjectures about how ‘think & link’ supports novices creation of

integrated SCD –

1. Conjecture 1 - Our first conjecture is related to the outcome of SCD, which satisfies

the criteria for software design described in Section 4.1.3 in Table 4.3.

If an individual student builds syntactic & semantic interpretation of FBS

design elements; creates, connects & evaluates FBS design elements using strategies

and associate FBS graph to UML diagrams, they will be able to create integrated

software conceptual design.

2. Conjecture 2 – Our second conjecture is related to the learning process of SCD,

 If an individual student evaluates FBS graph, associates FBS graph to UML

diagrams and writes planning, evaluation and reflection statements, they will be able

to understand and abstract the process and strategies for software conceptual design.

Based on these conjectures we evaluated the learning environment ‘think &

link’. The evaluation of ‘think & link’ is presented in the next chapter.

155

Chapter 7

DBR 2 Evaluation of ‘think & link’
‘think & link’ is a self-learning web-based learning environment designed for

teaching-learning of integrated SCD for novices. In the previous chapter, we

described the design of ‘think & link’ emerging from problem analysis (chapter 4)

and evaluation of preliminary learning environment designs (chapter 5). In chapter 5,

the RQ 2 (2.a & 2.b) was about the difficulties that novices face in the FBS graph

pedagogy. We conducted multiple iterations of the design of FBS graph based

pedagogy and evaluated them with study 2 and 3. The findings informed the design

and development of the learning environment ‘think & link’. In this chapter we

elaborate the study to evaluate ‘think & link’. The evaluation serves the purpose of

examining the conjectures that we have made in chapter 6.

 There are two studies (Study 4 & 5) that we describe in this chapter. Studies

are quite similar procedure wise but have different participants as they were

conducted at different institutes. We conducted study 5, as we wanted to reconfirm

our findings with participants from varied institutes.

7.1 Study Method

7.1.1 Research Questions

The broad research goal of the two studies is to identify the changes in novices’ SCD

understanding and process. The specific research questions are:

3.a. After interacting with ‘think & link’ what are the categories of SCD that learners’

create?

3.b.After interacting with ‘think & link’ what are the changes in learners’

understanding of SCD?

3.c. After interacting with ‘think & link’ what changes in the process of creating SCD

do the learners’ perceive?

3.d.How do the learners’ use the features in ‘think & link’?

The RQ 3.a. is towards testing the conjecture 1, that after learners interact with ‘think

& link’ they would create integrated SCD. The RQs 3.b and 3.c is towards testing

156

conjecture 2 about the understanding and processes of SCD. The RQ 3.d. is to

examine the interactions that learners perform while using ‘think & link’.

7.1.2 Study Participants

7.1.2.1 Study 4

The study was conducted as a hands-on one-day workshop in an urban private

engineering institute. The workshop was conducted in a computer laboratory of the

institute, which had individual student desktops with access to the internet. The

participants for the workshop were selected via purposive sampling. Due to the

complex nature of SCD, prerequisites for participants of the workshop were

determined. Only participants in their final year of computer engineering (CS) and

information technology (IT) were considered for the workshop. Students in the fourth

year of CS and IT undergraduate engineering programs complete courses such as

‘Structured Object Oriented Analysis and Design’ (semester 5) and ‘Software

Engineering’ (semester 6) in their third year of engineering. These two courses cover

topics of software design approaches, software-modeling tools, characteristics of

software solution etc. As the course contents included such concepts, it was

appropriate to consider that they had prerequisite knowledge for the SCD activity.

The participation in the workshop was voluntary. An online workshop registration

form to students via an instructor in the institute was floated. 30 final year students

registered for the workshop. However on the day of the workshop only 20 students

turned up (CS=15, IT=5: male=16, female=4). Students were provided with a consent

form, which contained details about the study and data collection. Students were

provided with the option of discontinuing the study at any time. The students that

signed on the consent form were part of the study. Students were provided with a

certificate after completion of the workshop. The objective was to obtain a typical

representation of learners from the age group (19-22) with appropriate domain

exposure. However the participants are representative of Indian urban engineering

students.

7.1.2.2 Study 5

For study 5 we replicated study 4 with participants from another nearby institute. We

conducted the study as a hands-on workshop in another urban private engineering

near the institute. The engineering institute is located in the same city as our institute.

157

The sampling technique employed was convenience sampling. 22 students in the

second year (male= 16, female=6) of their undergraduate degree in CS and IT

attended the workshop. Students had just finished their semester exams, and

voluntarily signed up for the workshop to learn about software design. Similar to

study 4, students were provided with a consent form. Only students who signed on the

consent form were part of the study. Students were provided with a certificate after

they completed the workshop. Software modeling concepts and tools are

prerequisites for ‘think & link’ and as second year undergraduates they have not yet

encountered these courses/concepts. So we introduced these concepts as a separate

module for these participants. These participants are also representative of Indian

urban engineering students.

7.1.3 Study Design and Procedure

7.1.3.1 Design Problems

Both the studies, 4 and 5, were a single group pre-post test design. In study 4 and 5,

we utilized the same set of design problems for pre-test and post-test. The design

problems for the pre-post test are provided in the Table 7.1. The design problems

were problems based on the familiarity of software systems usage among the students.

For example the systems such ATM, music player are familiar to participants as they

encounter such systems in their day-to-day lives. These two problems were selected,

as the participants would be familiar in terms of usage, at least partially, to the

software systems. In these problems the functional specifications are open-ended, and

the familiar part of the problem (ATM, music player) gives indication for the

functional decomposition. By open-ended we mean that no requirements were

provided to the students. Participants had to assume the requirements and constraints

from the problem and solve the problem. The indications for functional

decomposition make the design problem tractable for novices.

Table 7. 1 Design problems for pre and post-test

Test Design Problem

Pre-test Design a mood based automatic music player

Post-test Design a fingerprint ATM system

158

 As we have different design problems that the students worked on, it is

important to establish similarity among the problems so that we can evaluate the SCD

and compare the design strategy among the participants. We provided the problems to

an expert, with several years of software design expertise, who reviewed the

problems. The expert vetted them as problems that are equally matched in terms of

complexity, time taken to solve, and amount of code that needs to be written. When

compared with the design problems category in literature, these software design

problems are in between the innovative and creative design problem category (Brown

& Chandrasekharan, 2014).

7.1.3.2 Study 4

Before the study a registration form was floated. In the registration form

participants answered an open-ended questionnaire aimed to capture their prior

conception of SCD. Participants solved a pre-test at the start. They individually

created a SCD on pen and paper for the design problem - ‘Design a mood based

automatic music player’. They were free to use the internet for this task. After

completing this task, participants utilized the individual desktop to access ‘think &

link’. ‘think & link’ has three phases which the participants completed in ~4.5 hours.

After completing all activities in ‘think & link’, participants for an hour solved

another SCD for – ‘Design a fingerprint ATM system’. The pre and post SCD

problems can be considered equivalent, as they are similar in terms of complexity and

time taken to solve. After completing the post-test, participants were asked to respond

to questions about understanding of term software conceptual design, usefulness and

usability of ‘think & link’. Multiple semi-structured focus group interviews with all

participants were conducted for about 30 mins each. The focus group interviews were

conducted in small groups of 2-4 participants. The participants spent around seven

hours in the workshop.

7.1.3.3 Study 5

The study procedure of 4 and 5 is captured in Figure 7.1. Study 5 participants did not

have exposure to UML modeling, so there was a preliminary background building

session for them, one day before the study. A day before the study the workshop

participants went through a module on software modeling using the Unified Modeling

Language. The instructor for the session was a professor from the institute who

159

teaches the course software engineering. The instructor taught them about four

important representations - use case diagram, class diagram, activity diagram, and

sequence diagram. They used the online tool draw.io to create the representations.

The instructor also provided them with some practice problems to model. After the

session we asked the participants to respond to a survey designed to capture their

conceptions of software conceptual design. This was followed by a pre-test.

In the pre-test, participants were provided the problem -‘Create a software

conceptual design for mood based music player‘. After the pre-test participants were

provided with access to ‘think & link’. After completing the activities in ‘think &

link’ the participants were provided a post-test; ‘Create a software conceptual design

for fingerprint based ATM’. After the post-test, we collated participants' perceptions

about software conceptual design and ‘think & link’.

Figure 7.1 Study 4 & 5 procedure

7.1.4 Data Sources

7.1.4.1 Study 4

The online registration form for the workshop contained prior conception open-ended

questions to capture participants’ understanding of the term software conceptual

design. The question that participants were asked was, “What is your understanding of

'software conceptual design'?” The sketches and notes for the pre and post paper

based activities were collated as artifacts of the design activity. While the participants

interacted with ‘think & link’ their actions in the learning environment were logged.

160

At the end participants’ conceptions about software conceptual design, usability and

usefulness of ‘think & link’ were also captured as responses to online questionnaires.

The workshop closed with multiple focus groups semi-structured interviews where the

participants were asked to respond to questions about their design processes and

features utilized. Table 7.2 below maps the measure, data source and the analysis

technique.

7.1.4.2 Study 5

All the data sources in study 4 were also included in study 5. In study 5, after the

UML modelling session participants’ filled in the open-ended questionnaire to capture

understanding of SCD. They also solved the pre-test design problem of ‘mood based

music player’. The sketches and notes of the pre-test were collated. Participants then

interacted with the learning environment. While the participants interacted with ‘think

& link’ their actions in the learning environment were logged. Random selection of 6

participants was done. After completion of every phase these participants were

interviewed. The semi-structured interview contained questions about the task they

completed, how they performed the task, what features in ‘think & link’ were utilized,

what was their strategy to complete the task. They were also asked questions about

understanding of SCD and if it has changed from prior understanding. This was done

to understand the learners’ process of creating SCD closer to the completion of

activities in ‘think & link’.

Once the participants completed activities in ‘think & link’ they were provided

with the post-test problem. After completion of post-test the participants’ conceptions

about software conceptual design, usability and usefulness of ‘think & link’ was also

captured as responses to online questionnaires. Apart from the 6 participants other

participants participated in multiple focus groups semi-structured interviews where

the participants were asked to respond to questions about their design processes and

features utilized. Table 7.2 below captures the data sources, mapping to research

questions and the study.

161

Table 7.2 Mapping data source, RQ and study 4 and 5

Data Source RQ 3.a

(categories

of SCD that

learners’

create)

RQ 3.b

(changes in

learners’

understanding

of SCD)

RQ 3.c

(changes in

the process

of creating

SCD do the

learners’

perceive)

RQ 3.d

(learners’

use the

features in

‘think &

link’)

Study

Pre-post artifact ✓ - - - 4 & 5

Pre-post answers

to question about

understanding of

SCD

(questionnaire)

- ✓ - - 4 & 5

Focus group

interview

transcripts about

design processes

and features

utilized

- - ✓ - 4 & 5

Retrospective

interviews about

feature usage and

change in

understanding of

SCD

- - ✓ - 5

‘think & link’

system logs

- - - ✓ 4 & 5

162

7.2 Data Analysis

Data collected in study 4 and 5 is elaborated in the previous section. In study 4 and 5,

we followed a similar analysis process for each of the research questions. So in this

section, we describe the data analysis for each research question.

7.2.1 RQ 3.a After interacting with ‘think & link’ what are the categories of SCD

that learners’ create?

To answer RQ 3.a we used the participants’ pre-post design artifacts (Table 7.2). We

utilized the categories of software conceptual design by Eckerdal et al. (Eckerdal et

al., 2006) to analyse the pre-post design artifacts. The categories are presented in the

Table 7.3 below. These categories are results of a phenomenographic analysis of the

phenomenon ‘produce a design’. Eckerdal et al., (Eckerdal et al., 2006) set out to

gather the understanding of this phenomenon by giving the final year project students

a design problem and collecting the design artifacts. The category consists of content

and representation indicators in the artefact. The category 4 represents the use of

multiple integrated representations and well-developed solutions. The category 4 is

the target category after the intervention. These categories of student designs were

utilized to classify the pre and post SCD of participants.

Table 7.3 Criteria to evaluation the design artifacts of SCD

Category

Category

Content
(indicators)

Representation
(indicators)

0

Restatement

● Restate requirements

from task description
● No design content

other than stated in the
description

List or Bulleted items
Informal design

1

Skumtomte

● Add a small amount to

restating task
● Unimportant

Informal design

163

implementation details
● No overall system

view and any work on
modules

2

First step

Some significant work beyond
restatement

● Formal notation

representing
components

● Design of one of the
system’s
components like
GUI or Database

3

Partial
design

● Understandable

description of parts and
overview

● Description of parts
may be incomplete or
superficial

● Communication
between parts may not
be completely
described

● Formal notation
representing
working of the
solution

● Illustration of
relationship between
the parts

4

Complete
Design

● Well developed

solution
● Understandable

overview
● Solution parts

description includes
explicit communication
between them

● Formal representations
as well as text

Multiple formal notations
such as Use case, Class
diagram, component
diagram and all the
representations are linked

164

Once the participants’ artifacts are classified, there emerged a need to

explicate the participants' transition across the categories in pre and post-test. We used

the tool interactive stratified attribute tracking, iSAT (Majumdar & Iyer, 2016) on the

pre-post artefact categories result. iSAT is a web-based tool (Majumdar & Iyer, 2016)

that helps users visualize and interact with the data. It has been used for analysing

data from different research contexts (Majumdar & Iyer, 2016) and to take

instructional decisions. Here we use the tool to analyse pre-post artifacts category

transitions. iSAT helps to visualize the proportion of the participants who created

artifacts in a specific category. iSAT further assists to explicate the transitions

between the categories in both the pre and post-tests. It traces what proportion of any

category in pre-test has transitioned to the post-test categories. An example of the

visualisation, iSAT, from study 4 is presented in the Figure 7.2 below. The columns

represent the test, pre and post. In each column the cells represent the category and

the corresponding proportion of participants in the particular category. The

connecting bands between the two columns correspond to the transition across the

categories from pre to post test.

Figure 7.2 Example of an iSAT diagram

165

7.2.2 RQ 3.b After interacting with ‘think & link’ what are the changes in

learners’ understanding of SCD?

To analyse the open-ended responses to the questionnaire, we used the guidelines

provided by Clarke and Braun (Braun & Clarke, 2017). The open-ended responses to

both pre-post questions were already in textual format since they were collected

online. Each participant’s pre-post responses were collated. We went through the

responses and initially coded them. The unit of analysis was a sentence. The codes

represented the relevant qualities of SCD. After initial coding, codes were discussed

and refined by us together. This iterative process continued until both of us agreed to

the codes. In the next step, the codes were then clustered together to form themes. The

responses falling in a specific theme and code were compared to arrive at the answers

to RQ. Table 7.4 below presents the responses, their corresponding codes and the

clustered themes.

Table 7.4 Snapshot of participant responses and their corresponding codes/themes

Participant responses to –‘What is your

understanding of software conceptual

design?’

Corresponding code

capturing the quality of

SCD

Clustered

themes

Design model of the solution model outcome

Drawing conceptual and schematic

diagrams

drawings

Early phase in which we identify

constraints, requirements, goals and users

extracting problem

characteristics

activities

It is a systematic approach to create

solution details instead of just throwing

things on paper

systematic approach

Use online and offline drawing applications tools tools

Detailed plan of ideas which can be

explained to others

plan outcome

166

Conceptual design is going deep to find

solution and form connections to various

solution parts and modules

integration of solution

parts

activities

7.2.3 RQ 3.c After interacting with ‘think & link’ what changes in the process of

creating SCD do the learners’ perceive?

In the semi-structured focus group interview conducted after the post-test in both the

studies (study 4 & 5) we asked the participants the questions - “What according to

you is a process of creating software conceptual design? How did you understand

this? Has the process changed from previous?” The transcripts of the responses were

collated and we performed inductive thematic analysis (Braun & Clarke, 2017). We

initially coded for the activities that they mention. The unit of analysis was a

sentence. After initial coding, codes were discussed and refined by both of us

together. This iterative process continued until both of us agreed to the codes.

7.2.4 RQ 3.d How do the learners’ use the features in ‘think & link’?

To answer this RQ we used ‘think & link’ system logs.

System logs - ‘think & link’ stores the events happening in the system in the database.

There are two kinds of events that are logged. The first sets of events are the user-

generated events. The clicks on menu/feature buttons are user generated. Internal

system events such as worksheet saved, phase completion are also logged. The event

is logged as a row in the database. There are many columns in the row. However, we

will focus on the relevant columns for a logging row, which are log_id, user_id,

phase, subphase, subsubphase, event, event_time

● log_id : this is a unique number generated by the system for every log in the

system. This uniquely identifies each row.

● user_id : Every user in the system gets a unique number associated. The logs

are associated with the user based on this number. A log entry is associated

with a user based on this number.

● phase : ‘think & link’ has three phases. The log entry is associated with which

phase the log entry was generated in. The phase names are logged under this

column. For example, ‘Introduction’ is a phase

167

● subphase : Each phase has 4 subphases in ‘think & link’. The subphases

indicate the task that the user is performing in the phase. For example, ‘FBS

graph’ is a subphase.

● subsubphase : In a subphase there are two tabs. One has information in the

form of the video and the other the task itself. For example, in ‘FBS graph’,

‘intro’ is a subsubphase.

● event : Each event description is captured in this column. For example if the

participant had clicked on the video then the description ‘FBS graph

introduction video is playing’ is captured here.

● event_time : This column logs the date and time. The time is tracked down to

the second.

All of these values are present for the whole session and the participants in the study 4

and 5. We utilized the trajectory miner package (TraMineR) in R. Utilizing the

TraMineR package we create time stamped event sequences (Ritschard et al., 2014).

Using this sequence we create ordering of sequences in each phase. We then extracted

the order of the successive elements in sequences that are shared by at least 5% of the

logs in each phase. Additionally we also looked for the most frequent sub sequences

in a window. We compared the frequent sub sequences across the post-test categories

of participants. The script for both these analyses is available in the Appendix.

7.3 Results

To answer RQ3a, we evaluated the pre-post solutions of the participants (study 4 & 5)

using the criteria by Eckerdal et al. (Eckerdal et al., 2004). To answer RQ3b, we turn

to the participants’ response pre-post to the open-ended question - ‘What is your

understanding of software conceptual design?’ The responses falling in a specific

theme and code were compared to arrive at the answers to RQ3b. Answers from focus

group interviews (study 4 & 5) and from the reflective interviews were used to answer

RQ3c. The system logs are the data sources to understand how the participants use the

features (RQ 3d) in ‘think & link’.

7.3.1 RQ 3.a After interacting with ‘think & link’ what are the categories of SCD

that learners’ create?

Study 4

168

In pre-intervention design solutions twelve out of the twenty participants’ artifacts are

in the category 3 (see Figure 7.3), which corresponds to the usage of diagrams

representing the flow of the solution. Most of the participants created flowcharts

describing the flow of the functionality mood detection. Participants also have written

plain text exploring the problem. The text is mostly a restatement of the problem in

many different ways. This corresponds to the five (Figure 7.3) participants in the

category 0. Two participants created multiple artifacts like activity diagram, sequence

diagram and class diagram that falls in category 4. Some of the participants have

spent time in analysing only sub-problem mood detection. However they have not

utilized any formal representation, which contributes to category 0. We do not have

any participants in the category 2, which corresponds to static formal representation

of components. Post-Intervention SCD categories - fourteen of the participants’

artifacts are in the category 3. Participants have created flowcharts, which fall in

category 3 as in the pre intervention case. There are no artifacts in the category 1 & 2,

which indicates that participants are unable to utilize the formal representations for

function and structure separately. There is a drop in category 0 and a moderate jump

in category 4 (Figure 7.3).

Figure 7.3 Study 4 - Comparison of pre-post artifact categories generated

To analyse the transitions across the pre-post categories, we used the tool iSAT,

mentioned earlier (section 7.2.1). The observations from analysing the pre –post

transitions (Figure 7.4) are:

● none of the participant slid down to lower category in post test

169

● majority of the participants in both pre and post fell in the category 3 as they

utilized the representation of flowchart

● participants’ in the post intervention moved to the category 3 from category 0

(Figure 7.4). The majority of the dynamic representations utilized by

participants were flow charts, so that could explain the shift. A participant

moved to category 3 from category 1. This movement could indicate that

participants are able to create dynamic representations than the static formal

representations.

● participants’ in the post intervention moved to the category 4 from category 3

(Figure 7.4). During the intervention the understanding that software

conceptual design comprises multiple artifacts depicting the functional,

behavioural and structural view could be the reason for the shift.

There was no drastic shift in the participants’ artifacts, i.e. all the participants in post

intervention did not create SCD in the category 4.

Figure 7.4 Study 4 - Pre-post category transitions

Study 5

In pre-intervention design solutions seven of the 18 participants’ artifacts are in the

category 3 (partial design, see Figure 7.5), which corresponds to the usage of

diagrams representing the flow of the solution. In this category participants created

multiple representations using use case, class diagram and activity diagram. However

the links between these representations are missing, due to which they fall in the

170

category of 3. In this study 7 out of the 18 students created only class diagrams and

used text to express the working. This resulted in them falling into category 2 (first

step, see Figure 7.5). 3 participants added unimportant details to the solution e.g.

‘music is an important feature of our life as it soothes us’. Such details do not provide

information about the problem or the solution. So they fell in the category of 1

(Skumtomte, see Figure 7.4). A participant in category 0 (restatement, Figure 7.4)

merely restated the problem as text.

 Post intervention we see that a participant created complete designs (category

4). The participant’s solution in this category had different representations like

sequence diagram, class and use case. These representations were linked utilizing the

F/B/S design elements and establishing the relationship between them. 14 participants

post intervention created solutions (category 3) by utilizing multiple representations

using use case, class diagram and activity diagram. However the links between these

representations are missing. A participant in category 2 (first step) only came up with

a use case representation. 2 participants in category 1 (Skumtomte) only added

insufficient details to the problem and did not utilize any formal representation for the

solution.

Figure 7.5 Study 5 - Comparison of pre-post artifact categories generated

To analyse the transitions across the pre-post categories, we used the tool iSAT,

similar to study 4. The observations from analysing the pre –post transitions (Figure

7.6) are:

● majority of the participants in both pre and post fell in the category 3 as they

utilized multiple representations to depict the solution design

171

● 3 participants from category 1 in pre-test moved to category 3 in post-test. The

participants in pre-test added unimportant details to the solution but after the

intervention moved to creating solution designs using multiple

representations.

● 7 participants from category 2 in pre-test moved to category 3 in post-test.

They started out by creating only static representations like class or

component representations. But after the intervention participants shifted to

utilizing multiple representations

● 1 participant in category 3 in pre-test moved to category 2 post-test. In the pre-

test this participant created a use case diagram, class diagram and activity

diagram for the problem mood-based music player. The diagrams were

however not integrated so the solution fell into the category 3 (partial design).

In the post-test the participant however only created a use case diagram for the

fingerprint ATM problem. So the post-test solution fell into category 2. In

both the studies this was one participant whose post-test solution slid in a

lower category than the pre-test.

Similar to study 4, in study 5 also there was no drastic shift in the participants’

artifacts, i.e. all the participants in post intervention did create SCD in category 4.

Figure 7.6 Study 5 - Pre-post artifact category transitions

172

Summarizing Study 4 & 5 results

Answering RQ3a - Participants create formal representations that depict the

dynamic working aspects of the solution

From both the studies we observe that participants moved away from informal

designs. The decrease in category 0 (restatement) and category 1 (Skumtomte)

indicates that. Participants who created informal design and simple representations

after intervention moved to behaviour based representations. Participants who created

only behaviour-based representations went on to create multiple integrated formal

representations. The target category is 4, which indicates usage of multiple integrated

representations. Not all of the students in both studies reached this category. The

majority of the participants reached the category 3, which indicates usage of

behaviour based representations such as activity diagrams, sequence diagrams. Such

representations represent the dynamic aspect of the design solution.

The performance of category 3 participants in study 5 is better than

performance of participants in the same category in study 4. For example, in study 4

the participants in category 3 used dynamic representations like flowchart, however

the participants in study 5 in the same category used static as well as dynamic

representations like class diagram and sequence diagram. Study 4 participants are

final (4th) year engineering students. They would have learnt the courses on UML

modelling in their 3rd year. However, study 5 participants are 2nd year engineering

students and have had a session on UML modelling closer to the study. This could be

one of the reasons for utilization of the formal representations in the pre and post-test.

However similar to study 4, study 5 participants in the post-test did not achieve the

target level of the

7.3.2 RQ 3.b After interacting with ‘think & link’ what are the changes in

learners’ understanding of SCD?

Study 4

The open-ended responses and the themes emerging from the coding of all pre-

intervention responses resulted in broad themes of outcome, activities and tools. The

themes emerging from the coding of all post-intervention responses resulted in themes

of outcomes and activities. Responses under the post-intervention themes indicate a

gradual refinement of understanding and shift of perspective for the participants.

173

Below we discuss the shift in understanding with example responses, their

corresponding code and theme.

A. Refinement of understanding about SCD

The participants’ developed the understanding about SCD being a ‘combination of all

UML diagrams’ (code: drawings, theme: outcome) rather than just thinking about

‘conceptual & schematic drawings’ (code: drawings, theme: outcome). There is a

refinement in the outcome of SCD as an integrated solution from participants’

responses such as- (i) doing a conceptual design going deep into what actually the

problem is and form connections to various solution parts actually, (ii) what will be

the back end, what will be the front end, how will front end access back end. The

other observed refinement in participants’ understanding about SCD is that ‘…. need

to understand intricacies for implementing minor details’ (code: details of solutions,

theme: activities) whereas in pre response we see the response as ‘creating design

modules’ (code: module creation, theme: activities). Earlier participants’

understanding about activities in SCD was ‘documentation’ whereas now they refine

their understanding as SCD involves design and creation (‘in software engineering we

didn't design anything, it was just documentation’).

B. Perspective shift

The participants’ developed alternative views about SCD, which will be useful during

solving design problems. The first shift in perspective is about SCD being a

systematic approach – ‘it is a systematic way instead of just throwing things on paper’

(systematic approach- activities). Pre-intervention participants’ design for ‘customer

requirements in modules’. After intervention participants’ acquire the perspective of

designing for understanding of other ‘designers as well as programmers or

developers’. The participants’ also develop the perspective about the cognitive

process involved in the activity – ‘we need to first imagine how will end user use it,

then create use cases, identify components’. The participants’ view SCD as a stage

‘before coding’ where they are required to ‘mention all steps so that it is as close to

the real software’, whereas, in pre-intervention response they view it as a ‘phase

extracting problem characteristics’.

Study 5

The open-ended responses and the themes emerging from the coding of all pre-

intervention and post-intervention responses resulted in broad themes of outcome and

activities. Responses under the post-intervention themes indicate a gradual shift

174

towards refinement of solution characteristics from problem characteristics by the

participants.

A. Refinement of solution characteristics

Some of the participants before the intervention define SCD as blueprint, road map,

sketches, and representations for communicating ideas. Before the intervention

participants also held the perception of SCD consists of activities primarily pertaining

to design problems. In the pre-intervention questionnaire, participants describe SCD

as problem analysis, goal identification, and problem solving. One of the participants

describes SCD as ‘problem analysis by understanding people's needs’. In the post-

intervention questionnaire many participants move towards describing solution

characteristics. They define the outcome of SCD to be easy to understand, easy to

implement, modifiable. Some of the participants in the post-intervention questionnaire

also define SCD in terms of FBS design elements. Participants mention that in SCD

‘identify function, structures and behaviours’. They utilize the FBS graph evaluation

parameters as SCD output characteristics - ‘it should be consistent, connectivity, to

have all functionality, define the mechanism of (working) system’. These parameters

are based on the quality of conceptual models proposed by Lindland et al. (Lindland

et al., 1994). In the post-intervention questionnaire participants have utilized their

takeaways from the FBS conceptual model as well as FBS graph creation and

evaluation tasks. Participants to describe the activities in SCD as well as SCD solution

characteristics utilize these takeaways.

 We also zoomed into the pre-post responses of the participant in study 5

whose post-test artifact slid into a lower category (section 7.3.1). There was no major

change in the pre-post understanding in SCD.

Summarizing Study 4 & 5 results

Answering RQ3b: Participants exhibit shift in perspective, refinement in

understanding of SCD and solution characteristics

The pre-post open-ended responses indicate that learners’ have undergone a shift in

their understanding of SCD. The open-ended responses collated before the

commencement of the workshop capture the conception participants had before the

exposure to ‘think & link’. Although the coding themes in pre-post almost remain the

same, the responses themselves were contrasting in nature. This indicates a

conceptual integration (Vosniadu, 2019), in which the practices and understanding

from the activities in ‘think & link’ are combined with participants’ earlier

175

conceptions. We observed the shift in understanding in study 4 participants, who were

final year engineering students. Similar shift in understanding was observed in study 5

participants as well. So if participants have been exposed to UML modelling and then

learn integrated SCD building in ‘think & link’, they undergo a shift in understanding

of SCD. This shift is synonymous with the disciplinary practices in software design.

7.3.3 RQ 3.c After interacting with ‘think & link’ what changes in the process of

creating SCD do the learners’ perceive?

Study 4

The data sources to answer this RQ were utterances based on the focus group

interviews. Participants reflected on their change in process of creating SCD after the

intervention.

● Participants start with the notion of designing the solution to meet customer

requirements. However, post the intervention the participants refine their

understanding as designing for communicating solutions to developers as well.

This is evident in the shift ‘designing for ease of implementation’.

● Participants start with the notion of SCD pertaining only to the solution. Post

intervention participants improve their understanding about SCD pertaining to

details about the problem as well as solution. The theme ‘expanding problem

and solution’ captures this improvement.

● Participants initially describe the solution as a set of modules. However, post

intervention they speak about connecting the modules. So participants move

from disparate to interlinked solution parts, the theme in which such an

improvement is captured

● Participants reflect on the whole aim of the SCD, which was previously used

for documentation. However, as they work on different problems, they realize

that in this phase, they design and create solutions that fulfil requirements.

We see (Figure 7.7) that such shifts and refinement are not trivial, but they bring

about the subtle changes that participants perceive about the process of creating SCD.

176

Figure 7.7 Study 4 - Participants' perception of processes in SCD

Study 5

Similar to study 4, the themes were extracted from the focus group interviews.

Participants reflected (Figure 7.8) on their change in process of creating SCD after the

intervention.

● Similar to study 4 results, participants reflected that SCD needs to be helpful

for developers to implement the solution. Design needs to communicate the

intended working of the solution as well as satisfy the problem requirements.

● Participants reflected that along with the explanation of the working of the

solution the SCD should also be able to explain the requirements of the

problem to the developers.

● In study 5 participants reflected on the process of balancing the features in the

solution. A participant mentioned before the intervention, in the design

solution, as designers they would offer features to satisfy the client. After the

intervention, participants realize that having a lot of features would increase

the complexity of the implementation.

● Additionally, participants reflected on the change in strategies. Post

intervention participants describe FBS strategies for design, whereas pre-

intervention the UML diagrams were utilized where they get stuck while

creating the solution.

177

Figure 7.8 Study 5 - Participants' perception of processes in SCD

Summarizing Study 4 & 5 results

Answering RQ3c: Participants exhibit shift in design strategies, refinement in

stakeholders, goals of process of SCD

The gradual change in the participants’ understanding about the processes in SCD is

indicative of conceptual change (Nussbaum, 1989). Study 4 participants responded

broadly about the process of SCD to actually designing where both the problem and

solution are expanded. Participants in study 4 also shifted their understanding that the

SCD process should extract solution details at the same time maintain coherence in

the solution.

Study 5 participants revealed shift in design strategies during SCD. The

participants realized that during the design process they would need to balance

between the features and implementation complexity. They reflected about how FBS

design elements will be utilized by them during the SCD. All these changes indicate

that participants perceive a shift in the process of SCD. We also zoomed into the lone

participant whose post-test solution design slid into a lower category (section 7.3.1).

In the pre-intervention strategy the participant mentions concepts such as ‘abstraction

', ‘data structures’, ‘modularity’ as strategies to create SCD. Post-intervention the

participant mentions the use of FBS graph and UML diagrams.

178

7.3.4 RQ 3.d How do the learners’ use the features in ‘think & link’?

To answer this RQ, we combined all the logs from study 4 as well as study 5. Instead

of comparing the learner actions study wise, we wanted to examine the learner actions

in each phase. We also intend to compare the learner's actions according to their

performance in the post-test. The results to this question are presented phase wise,

starting with phase 1.

7.3.4.1 Phase 1 – Learner actions sequences

In this phase we expect the learner to individually engage in the activity of building

FBS conceptual models in problem context1 (mood based music player). The features

available in ‘think & link’ in this phase are the FBS graph manipulator, activity sheet

and the various video resources. We expect that the learners seek appropriate

information as and when necessary, utilize the FBS graph manipulator and complete

the activity sheet. As we see in the graph below, the X-axis represents the time-stamp

in seconds. The Y-axis represents the events that have been logged in the database.

The participants start with information, and then they read the problem context. The

participants also go through the video about the task in this phase. After which the

participants move to the graph section. This movement to the graph section is

prompted by CASA. In the graph section, participants go through the introduction

video. After this, the participants start solving the activity sheet.

In the Figure 7.9, we see a section highlighted in the graph area. This indicates

that all participants have gone back and forth between the FBS graph as well as the

task sheet. This indicates that to complete the task sheet, the participants utilized the

FBS graph manipulations.

179

Figure 7.9 Participants’ sequence of actions in Phase 1

Apart from the order of the successive events in the phase, we also looked at

the most frequent event sequence pattern in this phase. The Table 7.5 represents the

most frequent event sequence pattern. The sequences in the Table 7.5 have occurred

in all the action sequences (support =1). The first row indicates the pattern that is

enforced in ‘think & link’ phases. Participants need to plan for the phase, before they

start activities. The participants’ plan for the phase by looking at the task video as

indicated by the event ‘introductioncontextintrovideo’. The event

‘introductioncontextintroformsub’ indicates that participants have completed planning

for the phase.

The next row indicates the most frequent sequence, which is the graph and the

worksheet task. The row 4 indicates the sequence in the reverse order, which indicates

that participants move back and forth between the graph task and worksheet task.

Row 3 in the Table brings the sequence of how the participants get to the worksheet

task- they view the task video, complete filling in the plan for the phase, and move to

the graph task.

180

Table 7.5 Most frequent sub sequences in phase1

Most frequent sub sequences occurring in Phase 1

(introduction, introductioncontext)-(introductioncontextintrovideo)-

(introductioncontextintroformsub)

(introductiongraphtask, introductionworksheettask)

(introduction)-(introductioncontextintroformsub)-(introductiongraphtask,

introductionworksheettask)

(introductionworksheettask)-(introductiongraphtask)-(introductionworksheettask)

We see that the action sequences are common across all the post-test category

participants. We also decided to examine differences between the FBS conceptual

models created by participants. Looking at the different answers to the abstraction

task in phase 2, we did this. In Table 7.6 we present the examples in each of the post-

test category participants (Table 7.3). Even though the participant action sequences

are similar, there is a difference in the conceptualization of the FBS model. The post-

test category participants indicate a difference in their understanding of the FBS

conceptual model. Participants in

● informal design category (category 1 & 2)- abstract only relationship between

dyads (row 2 in Table 7.6)

● partial design (category 3) - either don’t abstract or start with Functions (row 3

& 4 in the Table 7.6)

● complete design (category 4) - triads & start with Structures (row 5 in the

Table 7.6)

We also looked at how the participant whose post-test category of SCD slid into a

lower category performed at this task. The response of the participant for this task is –

‘Function is implemented by behaviour and implemented by structure.’ The

participant has abstracted the relationship of the triads starting with function, which

explains the usage of only use case diagrams in the post-test (section 7.3.1).

181

In the next section we examine the participants actions in the phase 2 of ‘think &

link’.

Table 7.6 Comparison of participants' semantic interpretation of FBS conceptual

model

Post-test category Abstraction of FBS relationship

Informal design

(category 1 & 2)

● Function Implements Structure, structure is utilized to

achieve the Behaviour, Structure demonstrates the

Behaviour which is implemented using function

● Function consists Function, Structure implemented by

Behaviour, Function combines Structure, Function

represented Structure

Partial

design (category 3)

● mood detection implemented by user speaks for mood

detection implemented by voice input screen consist of

mike used by end user

● Function is achieved by Structure utilized by Behaviour

● Function is implemented by Structure which gets

utilized during user Behaviours

Complete

design (category 4)

● Structure consist of function & implemented by

behaviours

● Functions are implemented by structures, which utilize

behaviour. Behaviour combines with structure to

implement functions.

7.3.4.2 Phase 2 – Learner actions sequences

In the phase 2 we expect the learner to individually engage in the activity of

editing and evaluating the FBS graph in problem context1. The features in ‘think &

link’ that are available to the participants are the FBS graph editor; FBS graph self-

evaluator and the various information resources. The prompts and scaffolds from the

pedagogical agent based on the learner actions are also available. We expect the

182

learners to utilize these resources and complete the tasks of editing and evaluating

FBS graph.

As we see in the graph below, the x-axis represents the time-stamp in seconds.

The y-axis represents the events that have been logged in the database. The

participants start with looking at the task introduction. Completing the planning task

as well as recap task. Then the participants move to the evaluation tab immediately.

They watch the evaluation task video. As they evaluate they move towards the FBS

graph-editing task. Then we see in the Figure below, participants move back and forth

between the FBS graph evaluation and editing tasks. The participants end this phase

by watching the UML creation video.

In the Figure 7.10, we see two sections that are highlighted. This indicates the

frequent back and forth between certain tasks and/or features. The first one is between

the context task and the evaluation video. Participants refer to the context task video,

which indicates the tasks that need to be completed in this phase. The evaluation intro

video provides details of the evaluation task like usage of the evaluation wheel; FBS

graph evaluation criteria to name a few. The next section of the graph area, which is

highlighted, is the frequent back and forth between the evaluation task and graph task.

It is interesting to note that the participants start with the evaluation task and then

move to the FBS graph task. The FBS graph tab is familiar to the participants, as they

have used it in the previous phase. Additionally, it comes ahead of the evaluation tab;

even then the participants start with the evaluation task.

183

Figure 7.10 Participants' sequence of actions in Phase 2

Apart from the order of the successive events in the phase, we also looked at

the most frequent event sequence pattern in this phase. The Table 7.7 represents the

most frequent event sequence pattern. The first row, similar to Table 7.5 as in Phase

1, indicates the enforced task in ‘think & link’. Participants need to plan for the

phase, before they start activities. In row 2 we see that after completing the planning

task, participants move towards graph edit task and evaluation task. Row 3 and 4

indicates that to complete the phase, participants use the linear path of graph task,

evaluation task, UML video and phase completion. There isn’t much back and forth

between the graph task and evaluation task. However as seen in the Figure above

participants while evaluating tend to refer to the graph task.

Table 7.7 Most frequent sub sequences in phase 2

Most frequent sub sequences occurring in Phase 2

(induction, induction context)-(inductioncontextintrofeedbacksub)

(induction)-(inductioncontextintrofeedbacksub)-(inductiongraphtask)-

(inductionevaltask)

(inductiongraphtask)-(inductionevaltask)-(inductioneval)-(inductionphasefin)

184

(inductiongraphtask)-(inductionevaltask)-(inductionumlintro)

We also looked at the difference (see Table 7.8) between the sequences of

actions among the post-test category participants. Among the participants in informal

design category (category 1 & 2), we see that those participants did not edit the graph

at all. In the post-test category ‘partial design’ (row 2) participants we see that they

edit the graph and then evaluate. There is no back and forth between the graph task

and evaluation task. While we look at the post-test participants in category ‘complete

design; we see that they moved back and forth between - graph task & evaluation

task, phase 2 & phase 1.

Table 7.8 Comparison of sub sequences based on post-test performance

Post-test category Event sub sequences

Informal design

(category 1 & 2)

(induction)-(inductioncontexttask)-(inductionevaltask)-

(inductionphasefin)

Partial design

(category 3)

(inductiongraphintro)-(inductiongraphtask)-

(inductionumlintro)-(inductionphasefin)

(inductiongraphtask)-(inductioneval)-(inductionevaltask)-

(inductionphasefin)

Complete design

(category 4)

(inductiongraphtask)-(inductionevaltask)-

(inductiongraphtask)

(inductiongraphtask)-(introductiongraphtask)-

(inductiongraphtask)

(introductionworksheettask)-(inductioncontext)-

(inductioneval)-(inductiongraphtask)

185

7.3.4.3 Phase 3 – Learner actions sequences

In the phase3 we expect the learner to engage in the activity of creating and

connecting FBS design elements in a new problem context2. Additionally in this

phase the learner is expected to be able to understand the underlying links between

various UML diagrams from the FBS graph. The learner is provided with tools such

as FBS graph editor, FBS evaluator, prompts and scaffolds from pedagogical agent.

The learner in this phase is allowed to formulate a design problem of their own and

create a FBS based SCD. We expect the learners to utilize these resources and

complete the tasks of editing and evaluating FBS graph.

As we see in the graph below (see Figure 7.11), the X-axis represents the time-

stamp in seconds. The Y-axis represents the events that have been logged in the

database. The participants start with looking at the task introduction. This is evident

from the viewing of the task introduction video. After this, participants complete the

planning task, which is a compulsory task. After this the participants edit the problem.

In this phase participants are expected to frame a design problem for themselves. We

see that participants do this. After this the participants are seen looking at the

introduction of graph evaluation, graph editing and UML. These introductions are

presented as videos. Participants seem to be reviewing the FBS graph editing,

evaluation and UML concepts. After this participants are seen to go back to the phase

context to understand the goals of this phase. After having done that participants go

back and forth between FBS graph creation and evaluation. To complete the phase,

participants again move back to review goals of the phase and edit the FBS graph.

186

Figure 7.11 Participants' sequence of events in Phase 3

Apart from the order of the successive events in the phase, we also looked at

the most frequent event sequence pattern in this phase. The Table 7.9 represents the

most frequent event sequence pattern. The first row similar to all phases indicates the

enforced planning task. The first row also indicates that after completing the planning

task participants move on to the graph task and evaluation task. The second row

indicates the linear sequence of graph, evaluation tasks and UML intro. Sequences in

row 3 and 4 indicate that the participants read the problem, edit it if required, then

proceed to the FBS graph task, moving to evaluation task later.

Table 7.9 Most frequent sub sequences in phase 3

Most frequent sub sequences occurring in Phase 3

(ideation)-(ideationcontextintrofeedbacksub)-(ideationgraphtask)-

(ideationevaltask)

(ideationgraphtask)-(ideationevaltask)-(ideationumlintro)

(ideationcontextproblemread)-(ideationcontextproblemsaved)-

(ideationgraphtask)-(ideationevaltask)

187

(ideationcontextproblemsaved)-(ideationgraphtask)-(ideationevaltask)

We also looked at the difference between the sequences of actions among

the post-test category participants. The informal design category (category 1 & 2)

participants have followed the linear path in this phase. The linear path is that of

starting with the graph task, then evaluating the graph and completing the phase. In

the partial design category (row2, category 3), we see that participants have referred

to the previous phase’s evaluation task to complete this phase’s evaluation task. When

we examined the edits to the FBS graph, we see that the participants only edited the

FBS graph to add behaviour nodes. Complete design category participants (row 3)

have referred to the previous phase’s graph task (inductiongraphtask) to complete this

phase’s graph task. Last row of the Table shows that after formulating the problem,

participants’ refer to the previous phase’s graph task.

Table 7.10 Comparison of subsequence in phase 3 based on post-test performance

Post-test category Event sequences

Informal design

(category 1 & 2)

(ideation)-(ideationgraphtask)-(ideationevaltask)-

(ideationphasefin)

Partial design

(category 3)

(inductionevaltask)-(ideationevaltask)

Complete design

(category 4)

(inductiongraphtask)-(ideationgraphtask)-(ideationevaltask)

(ideation, ideationcontext)-(ideationcontextproblemsaved)-

(inductiongraphtask)

7.3.4.4 Answering RQ3d : Participants’ usage of features in ‘think & link’

• Phase 1 - All participants utilized the features of FBS graph, information

resources and pedagogical agent prompts to complete the worksheet task.

However there is a difference in the participants' understanding of the FBS

framework, based on their post-test performance. This indicates that the FBS

conceptual model abstraction differs according to participants’ post-test

188

performance. Some of the participants are unable to interlink FBS elements

together.

• Phase 2 - All participants utilized the FBS graph evaluator to complete the task.

Some of the participants who utilized the FBS graph editing options did not edit

the graph to include all FBS design elements. However, some participants did not

utilize the FBS graph editing options at all. The participants who did not utilize

the FBS graph edition option did not perform at the desired level in the post-test.

• Phase 3 - Majority of the participants utilized all features in this phase in a linear

fashion. However as conjectured not all of them went back and forth between the

feature tabs and phases. So even though the option of going back and forth is

provided only certain participants utilized it. Such participants were found to

perform at the target level in the post-test.

• The participant in study 5, whose post-test category slid in phase 2 did not edit the

FBS graph and directly completed the evaluation task. In the phase 3 the

participant regenerated the FBS graph for mood basic music player already

available in phase 1 and 2. The participant did not utilize the tasks and features as

intended.

• In each phase of ‘think & link’ we see differences in the participants' usage of

features and sequence of tasks.

7.4 Discussion

 From study 4 and 5 in the post-test we see,

● slight increase in participants creating representations describing behaviour and

multiple integrated formal representations

● slight decrease in participants creating informal designs

Additionally while comparing the pre and post test performance we also observe that,

participants who

● created informal design and simple representations after intervention moved to

behaviour based representations

● created only behaviour based representations went on to create multiple integrated

formal representations

After intervention, participants shift to create formal behaviour based

representations that depict the dynamic aspects of SCD. The pre-post open-ended

responses indicate that learners’ have undergone a shift in their understanding of

189

SCD. The open-ended responses collated before the commencement of the workshop

capture the conception participants had before the exposure to ‘think & link’.

Although the coding themes in pre-post almost remain the same, the responses

themselves were contrasting in nature. This indicates a conceptual integration

(Vosniadu, 2019), in which the practices and understanding from the activities in

‘think & link’ are combined with participants’ earlier conceptions. Although the pre-

post change in categories of design solution observed at the end of the workshop was

not significant, we see the shift in participants' outcome of SCD. There was no ‘gestalt

shift’ in the participants’ artifacts, i.e. all the participants in post intervention did not

create SCD in category 4 (Table 7.3). The gradual change in the participants’

understanding about the outcomes and activities in SCD is indicative of refinement in

understanding of SCD (Nussbaum, 1989) as follows

● The participants’ have refined the understanding of SCD consisting of design

activities rather than just documentation. In ‘think & link’ participants are to

build, evaluate and refine FBS models as SCD for design problems. The deliberate

practice activity of SCD creation for three problems in the workshop (mood based

music player, final year project and finger-print ATM system) brought the change

that SCD is design and not documentation.

● Participants have refined their understanding of SCD as creating solution details

and linking the solution parts. The FBS graph creation includes the activity of

creating individual F/B/S nodes and linking them together. These activities could

have led to participants to refine their understanding.

● Participants have also developed refinement of understanding in the outcome of

SCD as an integrated view combining all UML diagrams. In ‘think & link’ as

participants edit and create the FBS graph, a visualization of the FBS graph as an

integrated model is provided. This visualization informs the learner that an FBS

graph is an integration of function (use case diagram), structure (class/component

diagram) and behaviour (activity/sequence diagram). Additionally the learning

environment provides procedural steps in the form of a video to create UML

diagrams like use case, class diagram and sequence diagram from the FBS graph.

This conceptual change could alleviate the ‘lack of integration’ difficulty in

novices.

● The participants’ view SCD as consisting of cognitive processes of mental

simulation for creating use cases and then identifying structures that could

190

implement the functionalities. In ‘think & link’, CASA, the pedagogical agent

provides cognitive prompts, based on expert processes (Ball et al., 2010), for

creating as well linking FBS graph elements. The prompts are provided to the

participants based on their actions. This conceptual change could alleviate the

novice difficulties of fixation as it provides them with mental tools to generate

functionalities as well as identify ways to implement them.

From RQ3d we found differences in the participants’ feature usage as well as

sequence of tasks. In the results section we grouped the participants according to their

post-test artifact evaluation. The Table 7.11 captures the differences elaborated in the

results section.

 Additionally the participant whose post-test SCD slid to a lower category also

did not perform the intended activities in phase 2 and phase 3. This could have

resulted in the slide in the post-test performance. This result indicates the checks and

scaffolds that need to be built in the learning environment to ensure that the

participant performs the designed activities.

Table 7.11 Comparison of participants’ actions and sequences in ‘think & link’

 Post- test
 categories
Phases in
‘think & link’

Informal category
(1 & 2)

Partial design
category
(3)

Complete design
category (4)

Phase 1 –
Abstraction of FBS
relationship

abstract only
relationship between
dyads
e.g. Function
Implements Structure

either don’t abstract
or start with
functions
e.g. Function is
achieved by Structure
utilized by Behaviour

abstract the
relationship and often
start with structures
e.g. Structure consist
of function &
implemented by
behaviours

Phase 2 – Editing and
evaluation of sample
FBS graph

do not edit the graph
and directly start
evaluation

edit graph and then
evaluate, however
while examining
their edits it is only
addition of either a
function or behaviour

move back & forth
between evaluation
& graph edit tasks.
Their edits involves
all design elements
F/B/S. They also
move across the
phases 1 & 2

191

Phase 3 – Creation
and evaluation of
FBS graph

follow linear
progression of
activities, which are
editing the problem
statement, creating
the FBS graph and
evaluating it

For evaluation task
refer to the
evaluation done in
the previous phase.
Move across the
phases.

move back & forth
between problem
setting, graph edit &
evaluation tasks.
They also move
across the phases 2 &
3

7.5 Summary

This chapter summarizes the research studies and results of study 4 and 5. Study 4 and

5 were conducted to evaluate ‘think & link’ and test the conjectures that we made in

chapter 6. Based on the investigation and study results from 4 and 5, our conclusions

of conjecture 1 is as follows –

 If individually students’ build syntactic & semantic interpretation of FBS

design elements; create, connect & evaluate FBS design elements using strategies and

associate FBS graphs to UML diagrams they are able to utilize formal behaviour

based representations that depict the dynamic aspects of SCD.

We found that when novices are exposed to FBS based intervention, abstract

FBS relationships, utilize all the features in the teaching-learning system to create

their own strategy, create dynamic and multiple representations as solutions for SCD

problems. Participants, who did not utilize the FBS editing graph options, did not

exhibit significant change in the pre-post SCD category.

Our conclusions based on investigation of conjecture 2 is as follows –

If individually students’ evaluate FBS graph, associate FBS graph to UML

diagrams and write planning, evaluation and reflection statements, they are able to

understand and abstract the disciplinary processes and strategies of software

conceptual design.

 In study 4 and 5, we examined participants’ understanding as well as

reflections on process. Comparison of pre-post responses to understanding of SCD as

well as reflection in the SCD processes indicates conceptual change (Nussbaum,

1989). The gradual change in the participants’ understanding about the outcomes and

activities in SCD is indicative of the conceptual change (Nussbaum, 1989). Learners

seem to have a disciplinary practice-based shift in their understanding of SCD.

192

We noticed that participants utilized the features of ‘think & link’ differently.

When the system logs are grouped based on post-test category performance, a distinct

difference in the activity performance is noticed. These performance differences can

be the input for the redesign of ‘think & link’. We need to build checks and scaffolds

in the activities so that participants perform the intended activity at the requisite level.

In the next chapter, we integrate the findings from all our studies to propose a

local learning theory of conceptual change.

193

Chapter 8

Fostering conceptual change in software conceptual design
“One way to conceptualize undergraduate education is as a process of moving

students along the path from novice toward expert understanding within a given

discipline” (National Research Council, 2012). It is important to begin by identifying

what students do, how their practices contrast with the disciplinary practices (i.e.,

experts’ heuristic practices) and how to foster conceptual change in students.

Conceptual change covers the description and analysis of learners’ progress from

prior conceptions to disciplinary practices (Von Aufschnaiter & Rogge, 2015).

8.1 Unpacking ‘conceptual change’

Concepts provide a means through which humans make sense of the world

(Nersessian, 2010). Concept or conception here refers to knowledge which the learner

has to learn or an understanding that learner holds at a particular point in time (Von

Aufschnaiter & Rogge, 2015). The term “concepts in conceptual change research

often refers to a broader scope than isolated and static concepts” (Chi, 2008). The

‘knowledge-as-elements’ view proposes that naive knowledge consists of

unstructured collection of independent elements, which have been developed by

intuitive interaction with the world (diSessa, 1993). The ‘revision, refinement and

reorganization’ of the elements bound in the context are termed as ‘conceptual

change’ (diSessa, 2014).

 Conceptual change is a meaningful lens for our work as we begin with

learners’ knowledge about SCD via UML modelling. Then we utilize the FBS graph

based pedagogy to ‘revise, refine and reorganize’ the concepts so that learners’ create

integrated SCD. The practical steps that are recommended for ‘conceptual change’ in

a given context, includes: 1) opportunities for learners to realize the alternate

conceptions, 2) carefully examining and understanding the learner’s prior conceptions

to plan for teaching-learning, and 3) utilizing their prior conceptions in the teaching-

learning. In addition, the contextual sensitivity of conceptions also needs to be taken

into account. In this thesis the first research goal is to understand novice learners’

194

SCD processes. We have utilized this understanding to design ‘think & link’ that

supports novices learning of SCD via the FBS design framework.

To capture ‘conceptual change’, the experiment form of research, in which

different forms of instruction are compared in effect on performance of a test, is

inadequate. Tools and methods to capture learners’ conceptions include concept

inventories (CIs); in-depth interviews, concept maps, and concept sketches; surveys;

and observations of students. The nature of processes or “mechanisms” through which

the concepts and conceptual change happens need to be captured. In this thesis

throughout study 1-5 we have captured learners’ conceptions via open-ended

questionnaires, interviews and SCD solution artifacts. In study 1 specifically video

recording of learners’ SCD task was utilized to capture their design processes.

To foster disciplinary conceptual change, learners need to be involved in

conceptual engagement (Dole & Sinatra, 1998). Learners need to be engaged in an

effortful and mindful process. Learners’ should be encouraged to construct their own

knowledge and skills through active engagement rather than being passive listeners.

In order to reorganize what they know, learners must become self-regulated and

effortful, analysing and synthesizing new information (Jonassen & Easter, 2013). In

this thesis we have designed a FBS graph based pedagogy. This is operationalized as

a web page ‘think & link’. In ‘think & link’ learners model SCD as a FBS graph. The

FBS graph is an integrated view of the solution design. The learners are provided with

opportunities to map this FBS graph to prior concepts of UML modelling.

8.2 ‘Conceptual change’ in this thesis

Novices and experts exhibit a conceptual difference in understanding and doing SCD.

Novices view SCD as solution generation specific to a functional, structural or

behavioural view (Lakshmi & Iyer, 2018). The disciplinary practices evident from

expert literature involve problem understanding and generating cohesive solutions

fulfilling all requirements (Ball et al., 2010). Specific intervention was designed for

teaching and learning of this disciplinary practice. Deliberate instruction induced

conceptual change is attempted in this paper. Often a pre-test/post-test design using a

research-based concept inventory is employed to measure conceptual change (Singer

et al., 2012). However, in-depth information about the nature of conceptual change is

often missing in such cases. Students conceptual change is investigated by

interpreting written answers or statements, utterances, and/or drawings (Von

195

Aufschnaiter & Rogge, 2015). Descriptions, dialogue, sketches also capture such

changes (Singer et al., 2012).

In this thesis we can follow the conceptual change starting from understanding

novices’ design strategies, cognitive processes and difficulties (chapter 4), then move

towards designing intervention for the integrated SCD creation (chapter 5 & 6) and

then observe the conceptual change in novices’ SCD outcomes and understanding of

SCD (chapter 7). The Figure 8.1 captures this journey. It starts from understanding

novices’ difficulties, then designing learning environments for novices to engage in

disciplinary practices and then capturing the conceptual change that novices undergo

after interacting with ‘think & link’.

Figure 8.1 Conceptual change in this thesis

8.2.1 Novice design processes and difficulties in software conceptual design

Prior studies on novice difficulties in SCD (Eckerdal et al., 2006) (Chren et al., 2019;

Thomas et al., 2014) indicate that novices (i) only rewrite problem statements during

the design phase, (ii) are unable to utilize formal representations of UML to model

SCD and (iii) are unable to utilize multiple UML diagrams for integrated view of

solution.

We conducted an exploratory study (chapter 4) to understand novice design

strategy and their problem solving process. We utilized the FBS design framework to

code and represented their actions as linkograph. We also coded for cognitive

196

processes, wherein we used the conceptual design cognitive processes as the inductive

framework (Hay et al, 2017). The results from the study (chapter 4) show that -

● novices’ have the cognitive abilities like experts to mentally simulate

scenarios, retrieve prior software systems’ implementation, analogical

reasoning, problem structuring, problem analysis

● novices’ are however unable to integrate various solution parts to present a

cohesive solution

● some novices’ fixate and repeat certain functions, structures or behaviours.

They also fixate on solving a part of the problem in many ways

● novices’ utilize either problem or solution based strategies and are unable to

integrate them

8.2.2 					Designing for novices to engage in SCD disciplinary practices

Conceptual change arises from interaction between experience and current

conceptions during problem solving. Conceptual change results most consistently

from extended problem solving or some higher-order cognitive activity (Nersessian,

1999). So the pedagogy to foster conceptual change needs to involve problem(s)

solving. In this thesis we have contextualised SCD in the various design problems as

discussed chapter 1, section 1.4.1.

To foster conceptual Duit et al. (2008) have recommended design principles

for a learning environment. In the below bulleted items we examine the design

principles and their operationalization in ‘think & link’.

1. The learning environment needs to integrate domain-specific concepts that

learners need to know. To foster the disciplinary practice of integrated

solutions we provided a learning opportunity for learners to integrate UML

representation via the FBS framework. Initially, we provide them the

introduction to the FBS conceptual model as a representation. This

representation scaffolds the novices to integrate the different representations

of use case, class and sequence diagram.

2. Learners need to be actively involved in a process of meaning and knowledge

construction rather than passively receiving information. In ‘think & link’

learners are introduced to the FBS conceptual model via the FBS graph. This

model helps them to think about solutions using these design elements. The

FBS graph as a representation gives the opportunity to model their ideas as

197

F/B/S and establish the relationships between them. This construction of the

FBS graph also triggers the appropriate activity in software design.

3. Learners need to be supported in their active learning and need to be guided

towards the acquisition of self-regulated processes. In ‘think & link’ the

planning, evaluation, reflection and reasoning activities are provided to

learners. Before every phase in ‘think & link’ the learners are provided with an

activity where they need to plan what they learn and how it would be

meaningful to SCD. At the end of phase, learners can if they need, edit the

plan and their takeaways from the phase. Every phase has the learners to

complete a task, during their task, learners are provided with opportunity for

evaluation and reflection. This helps them self-regulate their learning and at

the same time abstract the process of learning.

4. Learners need to be provided with the information regarding the relevance and

meaningfulness of the tasks. In ‘think & link’, learners are provided with

explanatory videos about the relevance of SCD in software design. They are

motivated to create FBS graph as it would help them create integrated

solutions that satisfy the requirements. In pre-test learners are provided with a

problem context where they create their own solutions. In phase 1 & 2, the

same problem context as the pre-test is repeated so that the learners have the

opportunity to implement their solution ideas in the FBS graph. In phase 3,

learners are given the opportunity to define their own problem and create their

solutions as an FBS graph. In study 3 & 4, final year engineering students

were encouraged to frame their final year project as the problem context in

phase 3. So the FBS graph created in phase 3 is useful for their project ideas.

8.2.3 Conceptual change after using ‘think & link’

Outcome of SCD - After using ‘think & link’ learners’ start utilizing the

representations that are dynamic in nature. The solution that they create represents the

working of the solution in several conditions. The dynamic representations start from

simple ones like flowchart, to complex ones like activity diagram and sequence

diagram. In study 4 (chapter 7), the participants were all final year computer

engineering and information technology undergraduates. In the pre-test as well as

post-test most of the study 4 (chapter 7) participants utilized flowchart. This could be

attributed to their practice of using flowcharts to represent the working of the software

198

solution. In study 5 (chapter 7), which had participants in second year, we saw that in

pre-test participants utilized static representations like class or component diagrams.

In the post-test they shifted towards activity or sequence diagrams. Learners have

started creating SCD using formal dynamic representations that capture the internal

working of the solution.

Learner understanding of SCD – Conceptual change that learners undergo in the

categories of SCD understanding are:

● Refinement of understanding of SCD - In study 4 and 5 (chapter 7)

participants recognized that the outcome of SCD as integrated solution-

“combination of all UML diagrams”, “connecting the solution parts”, “how

will front end access back end”. Participants also recognized that SCD is a

phase of “creating/doing design” rather than just “documentation”.

● Perspective shift - Participants prior to ‘think & link’ aim at fulfilling all the

customer requirements. But post they acquire the perspective of designing for

understanding of other “designers as well as programmers or developers”.

Participants get the perspective of SCD being a “systematic approach”.

Additionally, they develop the perspective about SCD as a stage “before

coding” where they are required to “mention all steps so that it is as close to

the real software”, whereas, in pre-intervention response they view it as a

“phase extracting problem characteristics”.

● Solution characteristics - Participants now are able to characterize the solution

as - understandable, implementable, and simple. The participants also apply

the evaluation characteristics of the FBS graph to the solution outcomes like -

consistent, connectivity, to have all functionality, define the mechanism of

(working) system’. These parameters are based on the quality of conceptual

models proposed by Lindland et al. (Lindland et al., 1994).

Perceptions about SCD process - Participants in study 4 (chapter 7) also shifted their

understanding that the SCD process should extract solution details at the same time

maintain coherence in the solution. Study 5 (chapter 7) participants revealed shifts in

design strategies during SCD. The participants realized that during the design process

they would need to balance between the features and implementation complexity.

They reflected about how FBS design elements will be utilized by them during the

SCD. All these changes indicate that participants perceive a shift in the process of

SCD.

199

 ‘think & link’ fosters conceptual change in the SCD outcome, learner SCD

understanding and perceptions about SCD processes. These changes are captured in

the Figure 8.1

8.3 Summary

Conceptual change research begins with addressing learners’ understanding of a given

topic and the change in understanding as a result of instruction (von Aufschnaiter &

Rogge, 2015). The design, development and implementation of FBS graph based

intervention via ‘think and link’ fosters conceptual change. The gradual change in the

participants’ artifacts, understanding about the outcomes and activities in SCD is

indicative of the conceptual change (Nussbaum, 1989). Learners seem to have a

disciplinary practice-based shift in their understanding and perception of processes in

SCD. However, the process of conceptual change appears to be gradual and complex.

In this chapter we have summarized our research goals via the conceptual

change theory lens. It is important to utilize such theory lenses where the learners are

at the centre. Conceptual change theories help computing education researchers to

move beyond identifying individual errors and alternate conceptions. It helps advance

the domain-specific theory by understanding the process of knowledge acquisition,

application and evolution of alternate conceptions (Qian & Lehman, 2017).

200

Chapter 9

Discussion

9.1 Overview of Research Goals

In this thesis we started with the broad goals of -

● developing understanding of novice processes in software conceptual design

● using the understanding to design a technology enhanced learning

environment to support novices learning of SCD.

These goals were further expanded to specific RQs as shown in the Figure 9.1.

The Figure 9.1 is reproduced here again to recap the DBR cycles. As seen from

Figure 9.1 we started by collecting initial requirements from study 1 which informed

us about the novices design strategies and cognitive processes while creating SCD.

With these results from study, and principles from theory, we designed initial FBS

graph based intervention. Study 2 and 3 helped us identify difficulties of learners

while using FBS graph based interventions. Design-based research cycle 1 starts from

study 1 and ends at the results of study 2 and study 3.

Figure 9.1 Design Based Research cycles in this thesis

The results from cycle 1 helped us design the web-based prototype of ‘think &

link’. We conducted heuristic evaluation for usability for the prototype. This led to the

201

newer version of ‘think & link’. ‘think & link’ was then taken to undergraduate

computer and information technology students. Study 4 the participants were final

year computer engineering and information technology students. Study 5 the

participants in second year of the same branches. The results from study 4 and study 5

helped us identify the changes in novices’ understanding and process of SCD after

they have used ‘think & link’.

The ‘gestalt shift’ of creating integrated solution designs, as SCD in

participants after using ‘think link’ was not observed (study 4 & 5). However, we see

that the students have undergone changes in their understanding as well as SCD

processes as perceived by them. In the next section we summarize our findings and

present the process of conceptual change in learners, with extensions to teaching and

learning of SCD.

9.2 Summary of findings from DBR iterations

The two iterations of a design-based research project include characterization of

novices design strategies and cognitive processes, designing for novices to build

integrated SCD and conceptual change after students interacted with the learning

environment. We present the summary of our findings in Table 9.1. Each of these

findings is presented in sections below.

Table 9.1 Summary of findings

Goal Findings Study #

Unpacking novices
design strategies and
cognitive processes
during creation of
SCD

Unsuccessful novices

● unable to utilize formal
representations

● fixated to F/B/S design elements
● employ either problem or solution

based design strategies
● unable to trigger cognitive

processes for creating SCD
Successful novices

• start from solution generation
strategies

• anchor existing/previous solutions
and adapt them to the given
problem context

Study 1 -
Exploratory
Qualitative Study

202

• employed strategies such as
evaluation, test case generation,
and simulating failure scenarios

• utilized cognitive processes such
as retrieval, simulation, abstraction
and association

Unpacking novices’
difficulties while
learning using FBS
based interventions
(Suitability of FBS
design framework
argued in Chapter 5,
section 5.2)

● Novices require scaffolds and
prompts to build FBS conceptual
model

● Novices require scaffolds to create
FBS design elements and the FBS
graph

Study 2 & 3 - Lab
study

Designing FBS
framework based
pedagogy for
novices to create
integrated SCD

● FBS graph presented as
improvable model

● Tasks with the FBS graph to build
FBS conceptual model

● Scaffolds for FBS graph editing
and creation

● Evaluation task of FBS graph with
opportunities for reasoning and
reflection

Study 2 & 3 - Lab
study

Identifying changes
in novices’ SCD
understanding &
process after
interacting with FBS
based TELE

Participants
● shift to create dynamic and formal

representations of SCD
● observed refinement in

understanding of SCD
● shift in perspective about SCD

processes
● refinement in characteristics of

solution in SCD
● develop strategies for process of

SCD

Study 4 & 5 -
Field study

203

Identifying features’
in TELE that
learners’ utilize
leading to changes
in learners’
understanding and
processes of SCD

Participants
● utilize the tools & feature in phase

1 however there is a difference in
their abstraction of FBS conceptual
model

● utilize the features of ‘think &
link’ differently. Participants’, who
did not edit the FBS graph
suitably, did not exhibit significant
change in the pre-post SCD
category.

Study 4 & 5 -
Field study

9.3 Mapping the findings to tasks, features and scaffolds in ‘think & link’

The gradual change in the learners’ understanding about the outcomes and activities

in SCD is indicative of conceptual change (Nussbaum, 1989). In this section we

explain the aspects of the FBS graph pedagogy and the features of ‘think & link’

impacting the conceptual change.

‘Post the intervention participants create dynamic and formal representations of

SCD’

In the learning environment participants are provided with examples of end-

user behaviour and system’s behaviour. The improvable model of the FBS graph

provides the learner with such examples. The information videos about the FBS graph

as well provides such resources. In the FBS graph, the learners need to create

behaviour nodes and make connections with the structure and function nodes. This

could have triggered the process that in conceptual design phase they need to think

about how the structures will interact and be utilized. Participants are also provided

with procedural videos to create formal representations such as use case, class and

sequence diagram from the FBS graph. These aspects of ‘think & link’ trigger

the learners towards creating representations that depict the working of the system.

 ‘Post- intervention participants’ have refined the understanding of SCD’

In ‘think & link’ participants are to build, evaluate and refine FBS models as

SCD for design problems. The deliberate practice activity of SCD creation for three

problems in the workshop (mood based music player, final year project and finger-

print ATM system) could have brought the change that SCD is design and not

documentation.

204

In ‘think & link’, the FBS graph creation includes the activity of creating

individual F/B/S nodes and linking them together. These activities could have led to

participants to refine their understanding of SCD as creating solution details and

linking the solution parts.

In ‘think & link’ as participants edit and create the FBS graph, a visualization

of the FBS graph as an integrated model is provided. This visualization informs the

learner that an FBS graph is an integration of function (use case diagram), structure

(class/component diagram) and behaviour (activity/sequence diagram). Additionally

the learning environment provides procedural steps in the form of a video to create

UML diagrams like use case, class diagram and sequence diagram from the FBS

graph. Performing such tasks and utilizing the scaffolds in ‘think & link’ lead the

participants to have developed refinement of understanding in the outcome of SCD as

an integrated view combining all UML diagrams.

 ‘Post-intervention participants develop strategies for process of SCD’

As the learner create the FBS graph, the pedagogical agent provides the

learner with scaffolds and prompts to create nodes and links in the FBS graph.

Additionally learners are provided with planning, reflection and evaluation prompts to

abstract their process of learning SCD. These features have led to participants

developing and abstracting the strategies for processes of SCD.

In ‘think & link’, CASA, the pedagogical agent provides cognitive prompts,

based on expert processes (Ball et al., 2010) , for creating as well linking FBS graph

elements. The prompts are provided to the participants based on their actions.

Utilization of such prompts to create the FBS graph has led the participants to abstract

the processes of creating SCD and provides them with mental tools to generate

functionalities as well as identify ways to implement them.

9.4 Addressing the research goals

The research goals of this thesis are to develop an understanding of novice processes

in SCD and use it to design a technology enhanced learning environment to support

novices learning of SCD. The Table 9.2 summarises the claims of the thesis.

In this thesis we have identified that

● novices have the difficulties of fixation and lack of integration while creating

software conceptual design

205

● successful novices exhibit structure based design strategies and expert like

cognitive processes

We have created a learning environment to address the learning of SCD. The results

from our studies indicate that the following features and scaffolds in learning

environment fosters the creation of SCD

● affordances for sketching, evaluation, procedural information to integrate

UML representations

● adaptive prompts for to trigger cognitive processes and strategies

Base on study 4 and 5 we claim that

● novices assimilate SCD disciplinary practices in outcome, understanding as

well as processes after explicit training in FBS based intervention

Table 9.2 Claims and evidence

Claims Evidence

• Novices fixate when they utilize only either F, or B, or S

based design strategies

• Successful novices exhibit structure based design strategies

and expert like cognitive processes

Study 1

Following features and scaffolds in learning environment

fosters the process of creation of SCD

● sketching feature to create and connect FBS design

elements, evaluation feature to evaluate connected FBS

elements, assimilation of UML & FBS design elements,

planning & reflection opportunities to abstract SCD

process

● adaptive prompts for to trigger design strategies and

cognitive processes of mental simulation, abstraction ,

association

● tasks in the different planes of cognition – doing,

evaluation and synthesis

Study 1, 2 & 3

Novices assimilate SCD disciplinary practices in understanding

as well as processes after explicit training in FBS based
Study 4 & 5

206

intervention

9.5 Generalizability

The goal of this thesis was to understand novice design processes and support them in

the context of software conceptual design. So the findings from novice study, design

of the pedagogy as well its evaluation are important aspects. So we examine thesis

work for generalizability around these aspects.

9.5.1 Novice design strategies and cognitive processes

We identified that novices were successful in the task, when they employed structure-

based strategies. The successful novices also employed cognitive processes such as

mental simulation, abstraction and association. In case of unsuccessful novices, they

employed mostly function-based strategies. Additionally the cognitive processes were

limited to information seeking. We now examine whether these findings are likely to

exist in other problem contexts and complexity.

The claims about the novice design strategies and cognitive processes are tied

to the software design problem contexts. However, they can be generalized to the

context of general software design. As stated in section 1.5 about the scope of the

thesis, the design problems have been chosen based on familiarity of software systems

usage among the students. In these problems the functional specifications are open-

ended, and a part of the problem (ATM, payment systems, recommender system,

music player) gives indication for the functional decomposition. If we carry out

novice studies with similar other design problems, we are likely to find similar results

as study 1. Hence the findings of novice difficulties can be extrapolated to other

similar design problems.

 However the findings of the study cannot be extended to design problems,

which lead to a major invention or completely new products. The findings about

novice processes from this thesis cannot be generalized to problems in the category of

creative problems.

The findings of novice difficulties such as fixation and lack of integration

likely to be found in other design disciplines. These findings support the already

existing literature available in novice design. From this thesis, the characterization of

207

fixation among novices as thinking in terms of only functions or structures or

behaviours is applicable across the other design disciplines.

9.5.2 FBS graph based pedagogy

 The FBS graph can be utilized as external representation in integrating multiple

views for tasks in software design such as comprehension, evaluation and decision-

making. It can also be used for understanding complex systems in computer science

such as networks, operating systems. FBS graph can be utilized as external

representation of a program. The pedagogy designed for teaching and learning of

software conceptual design can be adapted to use for other design tasks in

programming such as code comprehension.

In the practice of engineering, fluency with creation of representations, usage

of multiple representations and translation across representations are some of the

essential skills (Johri & Lohani, 2011; Aurigemma et al., 2013). The FBS design

framework is based on the deep understanding of what (structure), the how

(behaviour) and the why (function). The design of the FBS graph based pedagogy

is based on FBS design framework and external representation. The FBS graph allows

the flexibility to start from any of the design elements and does not impose any

arrangement. In the FBS graph pedagogy the FBS graph is the external representation

that integrates the isolated UML representations of use case, class diagram and

sequence diagram. Adapting the FBS graph based pedagogy to other task contexts is

possible.

9.5.3 ‘think & link’

 ‘think & link’ has been instantiated as a self-paced, web-based learning environment.

In this thesis, it has been used in the context of a workshop. However, it can be used

through the semester with the software engineering course or corresponding

laboratory course as an accompanying tool. It can also be used in the final year project

lab, where the final year engineering graduates can create SCD of their final year

project.

‘think & link’ has an instructor-authoring interface, so the problems and FBS

graph can be changed. So for other design problems, the learning environment can

still be utilized. The scaffolds and prompts are based on the FBS graph and not

specific problem based.

208

In ‘ think & link’ the scaffolds and prompts are based on the FBS graph. The

FBS graph is an integrated view of the other UML diagrams. So for comprehension of

the UML diagrams the FBS graph could be utilized. In other design problem contexts

such as programming, could utilize the FBS graph to create and comprehend

programs that are devoid of programming language syntax (purpose-first

programming).

In contexts other than design, if the problem context can be represented by the

causal structure of the FBS framework, then ‘think & link’ could be used. For

example, in case of troubleshooting networks, the first step is to understand the

problem context by identifying the FBS elements. This can be represented as a causal

structure of FBS graphs. The learners can then construct a FBS graph for another

network troubleshooting scenario.

9.6 Limitations

 In this section we elaborate on the limitations of this thesis.

9.6.1 Learner characteristics

 The participants of the study were from urban engineering colleges, with medium

of instruction as English. In think & link most of the instruction, information and task-

related details are in English. Learners’, whose medium of instruction is not English,

might have difficulty in working with a learning environment. In such cases there

would be different learning outcomes. Apart from language we have not considered

any of the other learner characteristics such as experience, motivation, and

persistence.

 Our sampling was a convenience sampling of the participants in all the

studies. All participants volunteered for the study. We did not consider gender ratio

and also our analysis did not differentiate participants' process, outcome and

perceptions based on gender. So the effect of gender on SCD and the learning

outcome of intervention need to be investigated in future.

9.6.2 Design Problem Characteristics

The FBS graph based pedagogy and the scaffolds are applicable to the type of design

problems as discussed in section 1.5.1. The problem contexts chosen in this thesis are

based on usage familiarity. The four problems used in the five studies were selected,

as the students would be familiar in terms of usage, at least partially, to the software

209

systems. The indications for functional decomposition make the design problem

tractable for novices. Familiar problems have been used in this thesis. The proposed

pedagogy may not apply to creative problems.

9.6.3 Singular perspective – cognitive

In this thesis we have employed several methods appropriate to the research question.

Our results depend on the theoretical lens through which we view SCD. We believe

that design is created as the designer interacts with self, creates representations

outside, evaluates, makes changes and so on. So it was important to understand the

interactions with self as well as the designer’s environment. Any other theoretical lens

would lead to other results. In this thesis we have addressed the individual’s cognitive

aspects with respect to SCD and support novices teaching and learning of SCD.

9.7 Implications

9.7.1 Theory of novices’ SCD practices

In this thesis, we analysed the design strategies and cognitive processes using the FBS

design framework and linkography. We found that novices were unable to create

software design as they fixate on F/B/S design elements and unable to create

integrated SCD. The design strategies of novices were either F/B/S based. We found

that novices were successful when they used structure based design strategies and

triggered cognitive processes like expert software designers. In the context of

software design our work offers insight about novices’ software design processes.

 Creating integrated solutions and mapping the different UML models are

disciplinary practices in software design. The novice study offers insight on novice’s

current conceptions about SCD. To support and foster integrated model building, we

created FBS graph based pedagogy. Our work offers insights on how this pedagogy

fostered the disciplinary practice among novices. The results from novice study, FBS

graph pedagogy and novices’ conceptual change could be a part of the

discipline based education theory of software design.

9.7.2 Teaching and learning of SCD

The design features of ‘think & link’ could be utilized by teachers/researchers who

want to develop conceptual change in novices’ understanding of SCD. The results

from study 4 and 5 have implications for the teaching and learning of software

conceptual design. The major implications are discussed below:

210

● Explicitly think and link design elements – UML modeling has various

representations pertaining to each view of the solution. The learners need to be

made aware that the representations are linked. Linking these representations

will help the learner build cohesive design solutions. FBS graph can be used as

external representation for teaching and learning of SCD. The teaching and

learning needs to include activities pertaining to creating such integrated

representations.

● Scaffolds for cognitive processes – Teaching and learning of conceptual

design in software engineering predominantly revolves around tool usage and

understanding the syntax of the representation (UML diagrams). In think &

link the prompts could be broadly classified as information, procedural and

cognitive. Instructors could provide such prompts during the process of SCD

taking into account the learner’s actions and the context. Learners need to be

provided with explicit scaffolds for the cognitive processes like mental

simulation, abstraction and association (Ball et al., 2010).

● Deliberate practice of SCD – Learners need to understand the reason for

conceptual design before actually implementing the software using

programming languages. They would need to be provided with design

problems that are tractable at the same time necessitating the conceptual

design activity. During the process of practice, learners need to be gradually

taken through the planes of cognition – doing, evaluation and synthesis.

Opportunities for reflection and abstraction of the process of SCD need to be

provided to the learners.

In this chapter we have shown how the research goals have been addressed by

integrating all the findings. We also provided the implications and limitations of our

findings. In the next chapter we discuss the future work.

211

Chapter 10

Conclusion
Characterization of novices’ design processes and designing a learning environment

to support novices learning of SCD are the research goals of this thesis. These

research goals led to the two iterations of a DBR project. We conducted five studies in

the two iterations of DBR. Study 1, 2 and 3 were part of DBR cycle 1. In this cycle

we used the FBS design framework lens to - understand novices design processes in

SCD and build preliminary interventions for novices to learn SCD. The findings from

this cycle were utilized to create FBS graph based pedagogy in DBR cycle 2. This

was implemented as a web-based learning environment named 'think & link'. Study 4

and 5 were conducted to understand and evaluate the effects of 'think & link'. In this

chapter we provide the conclusions of this thesis and the future work that we envision.

10.1 Contributions of thesis

The Table 10.1 summarises the contributions of this thesis and provides the

implications of the contributions as well.

Towards theory of software design education - This thesis provides detailed

characterization of novice design strategies and cognitive processes in software

conceptual design as discussed in section 9.7.1. These results have implications for

computing and software education researchers to utilize these results and methods to

add to the theory of novice software designers. Learning scientists and design

educators could examine the similarity of these results in their respective contexts and

settings.

Towards pedagogy of software conceptual design - This thesis describes a FBS graph

based pedagogical design of a learning environment for supporting novices’ software

conceptual design creation. Instructional designers and developers can adapt this

design to develop technology-enhanced learning environments for teaching and

learning of software conceptual design.

212

This thesis identifies a set of scaffolds necessary for teaching and learning of

software conceptual design. Instructional designers and engineering educators can use

these scaffolds for teaching and learning of other software design problems.

Towards teaching practices of software conceptual design - ‘think & link’ is an

instantiation of the FBS based pedagogy. It helps learners to create integrated multiple

representations by thinking in terms of FBS for a given design problem context. ‘think

& link’ can be used throughout the semester with the software engineering course or

corresponding laboratory course as an accompanying tool. ‘think & link’ has a

teacher-authoring tool for extending the FBS graph contexts to different design

problems.

Table 10.1 Thesis contributions and implications

Contributions Implications for

Characteristics of novices’ design strategies and cognitive

processes while creating software conceptual design

Researchers in

computing education

research, learning

science and design

education

Identified a set of features and scaffolds for novices

teaching-learning of FBS based software conceptual design

Instructional designers

and software engineering

educators

Pedagogical design of a FBS based learning environment

for teaching-learning of software conceptual design

Instructional designers

and software engineering

educators

Identified the usage of features in the learning environment

by engineering undergraduates

Instructional designers,

Researchers in building

TELE

213

think & link is an instantiation of the FBS based pedagogy.

It helps learners to create integrated multiple

representations by thinking in terms of FBS for a given

design problem context. We have provided a teacher-

authoring tool for different FBS graph contexts.

Software engineering

students and software

engineering educators

10.2 Future Work

This thesis work has brought out several new research questions and so our work can

be productively taken forward in multiple directions. We begin with the results of the

last study.

10.2.1 Mining for learner actions and FBS graph in ‘think & link’

All learner actions in ‘think & link’ are logged and stored in the database. With the

FBS graph we could explore how learners engage with FBS design elements. We

could at the same time compare the action sequences as learners engaged with the

FBS design elements in the FBS graph. As our samples were smaller, there were

limits to the kind of analyses possible. However, with large data collection and over

semester-long studies, we could create learner models about FBS design elements

usage from the data. The analysis could also then categorize productive and

unproductive actions with respect to FBS graph. We could make predictions of

learners’ actions and based on which category they fall into the actions could then be

scaffolded and guided towards productive disciplinary practices via the FBS graph.

This project could be a master's level project for a master’s student with computer

science education and learning analytics interests.

10.2.2 Adaptive visual dialogue agent for ‘think & link’

The pedagogical agent CASA provided the prompts and scaffolds for the creation and

evaluation of the FBS graph. As learners navigate and assimilate the FBS graph, a

visual dialogue agent that can prompt the learners, get the learners to reflect, respond

and provide feedback. The dialogue between the agent and learner needs to be visual

as well. The agent currently in ‘think & link’ is based on learner actions but the

214

prompts placed on the left side of the learning environment do not bring the learner’s

attention. This could be the reason that the learners continue with their own actions

and do not follow the recommended actions while editing or creating the FBS graph.

This agent could model “persuasive interactions between the learner and the system”.

10.2.3 Large study for understanding of novice design strategies and cognitive

processes in SCD

In this work, we have brought out the novices’ design processes in software

conceptual design with a small set of participants. In this thesis we have established a

process of analysis of software conceptual design. A larger study similar to the

scaffolding project (Eckerdal et al., 2006) can be undertaken. It would involve

evaluation of artifacts, novice processes and reflection. The replication of study 1 in

this thesis on a large scale would add to the theory about novices’ difficulties in

software design. This theory would be interesting for researchers in computer

education and software design educators. This project can be undertaken as a multi-

institutional study by a post-doc researcher.

10.2.4 Unpacking the conceptual change through large scale implementations of

‘think & link’ in classrooms

In this thesis we conducted two studies (study 4 & 5) as workshops for a day or

utmost two days. It would be interesting to take ‘think & link’ as a teaching-learning

tool in a semester-long course of UML modeling or software engineering. From study

5 we observed that second year undergraduate engineering students who were

recently exposed to UML modeling had performed better than study 4 participants

who were final year engineering students. So as and when computer and information

technology students learn UML modeling, ‘think & link’ could be used as a teaching-

learning tool. The evaluation that happens over the semester-long study would

provide deeper understanding about the gradual conceptual change. This project could

be a master's level project for a student with computer science education

interests.

10.2.5 Implementing assessment in ‘think & link’

In each phase of think & link we observe differences in the participants based on their

post-test category. In phase 1 we observe differences in participants’ understanding of

FBS framework. Some participants abstract the FBS framework starting with

215

structures and some other abstract with respect to the functions. However be the

nature or sequence of abstraction, we would need to ensure that learners understand

FBS as a logical unit. Based on learners’ response to answers in the recall task at the

end of phase1, we would need to assess the responses. Based on the assessment

appropriate feedback needs to be provided to the participants.

 In phase 2 we observe that participants in the lower categories of post-test did

not edit the FBS graph. We need to assess the FBS graph for edits, so that we ensure

that participants complete the task of editing the FBS graph in phase 2. Additionally

we would need to provide assessment of the FBS graph in phase 2 as well as phase 3.

This evaluation would need to be compared with the participants’ self-evaluation. The

comparison between the automated assessment as well as participants’ self-evaluation

could lead to participants creating FBS graph at the target level of the rubric.

Additionally the assessment of the FBS graph by the system would ensure that

participants are corrected in case of inaccuracies in the FBS graph.

 To make sure that learners’ takeaway the intended goals of the environment,

assessment needs to be incorporated into the three phases. Based on the assessment of

these, appropriate prompts and scaffolds need to be added to the existing version of

‘think & link’. ‘think & link’ can then be evaluated with research questions similar to

study 4 and 5.

10.2.6 Designing for reflection in SCD among learners and instructors

Learning analytics dashboard (LAD) is the integration of the learning analytics

approach with the concept of a dashboard, which visualizes the information regarding

learning data, learning patterns, and behaviours (Teasley, 2017). With the help of a

learning analytics dashboard the learners can monitor and reflect on their learning

processes (Klerkxx et al., 2017). They can then compare their progress to their

learning goals and make necessary adjustments. In ‘think & link’ we log the learner

actions and post-hoc we have analysed the learner’s progress. If we could analyse

their current actions and map it to the learning goals it would serve as visualization

for meta-cognitive reflection and evaluation. Learners plan their goals before every

phase begins, they can compare their plans to the actions and make necessary

adjustments to their actions or goals.

 A similar dashboard can be provided to teachers about the progress of the

students in ‘think & link’. The learners' understanding about FBS and the evaluation

216

of the FBS graphs could be provided to the teacher. The teacher based on the data

available can choose to intervene and provide guidance to the learners. Such a

dashboard for a teacher would be helpful to also access the active engagement of the

learners in the learning environment when it is being used in laboratory classes.

 Previous research about providing such features to learners as well as

instructors has shown positive effects on final scores (Kim et al., 2016). However, we

conjecture that the features such as personalized dashboard along with feedback and

explanation on how to improve and interpret the results could lead to better learning

and awareness during the process of the learning. Testing this conjecture could be an

interesting area of research using ‘think & link’.

10.2.7 Role of affect in SCD

We did not systematically incorporate or investigate the role of motivation and

interest in this thesis as mentioned in section 9.6.1. For studies 1-5, we purposively

sampled motivated and interested participants and so the lack of motivation and

interest was not a factor in the software conceptual design process. It is important to

investigate the effect of these and other potential affective factors on software

conceptual design. One way to investigate these affective factors is to intermittently

track novices’ self-reported motivation, interest, self-efficacy, to name a few, as they

are completing activities and correlate these affective factors with their productive

and unproductive action patterns. This will throw light on how affective factors

impact performance, and how performance in turn influences these affective factors.

These findings may also suggest what features are required in ‘think & link’ in order

to trigger and maintain the relevant affective factors such as interest, motivation and

self-efficacy among others.

10.2.8 Role of collaboration in SCD

In this thesis we have focused only on individual learners. However, we know that

collaboration is known to be a disciplinary practice in software design. In the

workplace, software engineers need to collaborate with other designers, developers

and team members to complete the process of design, development, implementation

and deployment of software. Additionally collaboration while working on ill-

structured problem solving is known to trigger learning processes, strategies that are

not available while they work alone (Schwartz, 1995). Collaboration has been found

217

to be very useful in design especially in the early conceptual phases of software

development (Brooks, 1986).

 However productive collaboration needs design and it does not happen

automatically. So it would be an interesting area to explore how collaboration can be

incorporated in the FBS graph based pedagogy. There are different phases in ‘think &

link’. We would like to understand at which phase in the ‘think & link’, would the

collaboration be more beneficial for software conceptual design. The broad research

questions of interest would be -

1. What is the effect of collaboration in software conceptual design outcome?

2. How should learners collaborate while learning software conceptual design?

3. What would be the nature of collaboration while learning software conceptual

design that would aid in disciplinary practices?

4. At what phases of ‘think & link’ should the learners collaborate while learning

software conceptual design?

10.2.9 Taking turns in design – Role of switching perspectives while design (end

user & system)

In this thesis we focussed on working with problems that participants are familiar

with. While solving such problems, we noticed that participants’ take perspectives of

self-using similar systems. The participants also take perspective of the system

working and come up with the internal working of the system. This aspect of

perspective taking could be more examined in the context of creating software

conceptual design solutions.

 Perspective taking is a cognitive process in which individuals adopt others'

viewpoints in an attempt to understand their preferences, values, and needs (Parker &

Axtell, 2001). Theories suggest that by engaging in perspective taking designers

obtain a clearer, more integrative understanding of what types of ideas will be useful

to the stakeholders (Grant & Berry, 2011). This aspect of the cognitive process needs

deeper understanding in the context of software design. It is important to understand

how novices engage in perspective taking. At the same time, how do expert software

designers engage with perspective taking? How do expert software designers switch

between perspectives? This aspect of perspective taking in the context of software

conceptual design would add to the theory on the disciplinary practices of software

design.

218

10.3 Final reflection

This thesis has been an attempt to unpack novice design processes and support them

in the context of software conceptual design. The aim of initiating the undergraduate

engineering students in the disciplinary practices employed by practicing software

engineers is fulfilled through the learning environment ‘think & link’. We utilized the

theoretical lens of FBS design framework to understand novices’ software conceptual

design processes. At the same time we utilized it to design pedagogy to support

novice design processes.

 In the process of this thesis, I have undergone change in the perspective of

learners/ novices. I have begun to understand that novices have the capabilities to

think and do as experts, however it is the difficulties that need to be unearthed and

alleviated. I believe that the teaching and learning is a rich and complex phenomena

intertwined within a context, with the learner at the centre. The context needs to

provide opportunities for learners to perform actions and reflect on them. In this

phenomenon we have the learners, the material they interact with and the context they

interact in. The learner is a social being and comes with identity and agency. There

emerges a strong need to acknowledge the existence of learner ‘s identity, agency,

intuition and complex reasoning, the last two of which can be recruited for formal

learning. The material that the learner interacts with needs to be malleable which

allows participation, supports expressiveness and transformation. The context

provides meaningful activity for the learners to interact with the material and make

sense of the interaction. The contexts need to be designed as 'enrichment frames'

consisting of meaningful activities, which are open ended, connected to intuition,

malleable, localized and contextualized. The learners would go through a pedagogical

experience where they bring in their relevant knowledge, engage in enrichment

frames, reflect and make connections beyond the discipline.

Going back to my belief of teaching and learning to be contextual, most of the

learning theories have been developed based on the research in USA/European

countries. I would be interested to study the relevance of the learning theories in the

context of Asian countries and maybe create theories of learning in the sub-continent

contexts. This thesis is the beginning in that direction.

219

Appendix

A. Consent form

Consent to Participate in Educational Research

[Title: Understanding software conceptual design]

You have been asked to participate in a research study conducted by T. G. Lakshmi from the
Inter-Disciplinary Program in Educational Technology at the Indian Institute of Technology
Bombay (IITB). The purpose of the study is to gather requirements for developing TEL
systems to teach software conceptual design. You were selected as a possible participant in
this study because of your educational background as a 3rd year engineering student.

· PARTICIPATION AND WITHDRAWAL

Your participation in this study is completely voluntary and you are free to choose whether to
be in it or not. If you choose to be in this study, you may subsequently withdraw from it at
any time without penalty or consequences of any kind. The investigator may withdraw you
from this research if circumstances arise that warrant doing so.

You will not be compensated for the participation. You should read the information below,
and ask questions about anything you do not understand, before deciding whether or not to
participate.

· PURPOSE OF THE STUDY

The study is designed to understand software conceptual design processes and gather
requirements for developing a TEL system. The TEL system intends to develop software
conceptual design in computer science engineering undergraduates.

· PROCEDURES

If you volunteer to participate in this study, we would ask you to do the following things:

1. Come up with a conceptual design for a software system
2. Participate in interview

Participating in this research study is voluntary. You have the right not to answer any
question, and to stop your participation in the study at any time. We expect that the study will
take about 3 hours. Your interactions will be audio and video recorded. A screen recording of
your interactions with the computer will be done.

· POTENTIAL BENEFITS
• Apply concepts learned to a real-world problem
• An immersive experience of a requirements gathering and software design and

activity

· CONFIDENTIALITY

220

Any information that is obtained in connection with this study and that can be identified with
you will remain confidential and will be disclosed only with your permission or as required
by law. We will not use your name in publications; however, we may need to use your
academic performance details if you give us permission.

· IDENTIFICATION OF INVESTIGATORS

If you have any questions or concerns about the research, please feel free to contact T.G
Lakshmi (lakshmiganesht@gmail.com) or Prof. Sridhar Iyer, CDEEP IITB (sri@iitb.ac.in)
with any questions or concerns.

SIGNATURE OF PARTICIPANT

I understand the procedures described above. My questions have been answered to my
satisfaction, and I agree to participate in this study. I have been sent a copy of this form.

__
Name of Participant

__ ______________
E-mail address Contact No.

__ ______________
Signature Date

B. Sample interview questions for study 4 & 5

The following sets of questions were used for the focus group interview after the

participants have completed the post-test. The interview began with broad questions,

and then to more specific questions.

Questions for Focus group interview

• Broadly can you talk about what you did in ‘think & link’?

• Lets go through each phase

o What was the phase?

o What did you do in there?

o How did you solve this task/question?

o What were the strategies used to solve the tasks/question?

o What was the role of the given info/tool/feature in ‘think & link’ in

solving the task? What would have happened if this info/tool/feature

was not present? What would you have done?

§ How did you use the info/tools/feature to solve the task?

221

§ How was the info/tool/feature of ‘think & link’ useful/not

useful in solving the task?

§ What more did you need to complete the task?

§ How would you recommend changing/adding/removing to the

features of think & link to do the task?

• What was the approach you took to solve the 'finger print atm system' (post-

test) design problem?

o How did you solve problems like these previously?

o Was there a difference in solving the problems before and after using

‘think & link’?

o Compare the UML diagram you drew for your final year project and

then the FBS graph that you drew

o Any changes you will make?

o Were there any differences in your approach of conceptual design

before and after the usage of the system? If yes, then can you say what

they were?

o By going through the FBS graph did it change the way you think about

software conceptual design?

o Will you use FBS graph for software conceptual design?

• What according to you is a process of creating software conceptual design?

How did you understand this? Has it changed from previous? If yes, why has

it changed and how did it change?

• What features in ‘think & link’ helped you understand this?

• What is the role of this conversation on your learning today?

• How would you redesign ‘think & link’ for a student such as yourself to better

learn software conceptual design?

C Scripts for analysis of log data

We present the R script used for analysis of the log data. In RQ 3.d. (chapter 7) we

have mentioned the results of the analysis. Here we present the R script using the

TraMineR library.

222

#using the library#
library(TraMineR)
#setting the workspace#
setwd("~/Documents/Lakshmi/Seminar/Learning Analytics/SAKEC/“)
#reading the source file#
mvad <- read.csv(file = "tse-sequence-intro.csv", header = TRUE)
#creating a time stamped event sequence#
mvad.seqe <- seqecreate(id=mvad$user_id,timestamp = mvad$event_time, event =
mvad$event)
#extracting subsequences found in 50% cases with 4 as number of events in a
window#
mvad.subseqee <-seqefsub(mvad.seqe,pmin.support=0.5, max.k = 4)
#writing subsequences into a file#
df <- mvad.subseqee$data
df$subseq <- as.character(mvad.subseqee$subseq)
write.csv(df,’subsequences-intro.csv')
#setting screen size#
par(mar=c(4,15,2,1))
#ordering successive sequences#
seqpcplot(mvad.seqe,
 filter = list(type = "function",
 value = "cumfreq",
 level = 0.8),
 order.align = "last",
 ltype = "non-embeddable",
 cex = 1.5, lwd = .9,
 lcourse = "downwards"

223

References

Abelson, H., & Greenspun, P. (2001). Teaching software engineering-lessons from

MIT. In Proceedings 10th International World Wide Web Conference.

Abernethy, K., Kelly, J., Sobel, A., Kiper, J. D., & Powell, J. (2000, March).

Technology transfer issues for formal methods of software specification. In Thirteenth

Conference on Software Engineering Education and Training (pp. 23-31). IEEE.

Ahmed, S., Wallace, K. M., & Blessing, L. T. (2003). Understanding the differences

between how novice and experienced designers approach design tasks. Research in

engineering design, 14(1), 1-11.

Ahmed, S., Wallace, K. M., & Blessing, L. T. (2003). Understanding the differences

between how novice and experienced designers approach design tasks. Research in

engineering design, 14(1), 1-11.

Akayama, S., Demuth, B., Lethbridge, T. C., Scholz, M., Stevens, P., & Stikkolorum,

D. R. (2013, September). Tool Use in Software Modelling Education. In EduSymp@

MoDELS.

Altadmri, A., & Brown, N. C. (2015, February). 37 million compilations:

Investigating novice programming mistakes in large-scale student data. In

Proceedings of the 46th ACM Technical Symposium on Computer Science Education

(pp. 522-527).

Armarego, J. (2009). Constructive Alignment in SE education: aligning to what?. In

Software Engineering: effective teaching and learning approaches and practices (pp.

15-37). IGI Global.

224

Atkinson, R. K., Derry, S. J., Renkl, A., & Wortham, D. (2000). Learning from

examples: Instructional principles from the worked examples research. Review of

educational research, 70(2), 181-214.

Atman, C. J., & Bursic, K. M. (1998). Documenting a process: The use of verbal

protocol analysis to study engineering student design. Journal of Engineering

Education, 87(2), 121-132.

Atman, C. J., Adams, R. S., Cardella, M. E., Turns, J., Mosborg, S., & Saleem, J.

(2007). Engineering design processes: A comparison of students and expert

practitioners. Journal of engineering education, 96(4), 359-379.

Atman, C. J., Cardella, M. E., Turns, J., & Adams, R. (2005). Comparing freshman

and senior engineering design processes: an in-depth follow-up study. Design studies,

26(4), 325-357.

Atman, C. J., Chimka, J. R., Bursic, K. M., & Nachtmann, H. L. (1999). A

comparison of freshman and senior engineering design processes. Design studies,

20(2), 131-152.

Aurigemma, J., Chandrasekharan, S., Nersessian, N. J., & Newstetter, W. (2013).

Turning experiments into objects: The cognitive processes involved in the design of a

lab on a chip device. Journal of Engineering Education, 102(1), 117-140.

Bakker, A., & Van Eerde, D. (2015). An introduction to design-based research with

an example from statistics education. In Approaches to qualitative research in

mathematics education (pp. 429-466). Springer, Dordrecht.

Ball, L. J., Onarheim, B., & Christensen, B. T. (2010). Design requirements,

epistemic uncertainty and solution development strategies in software design. Design

Studies, 31(6), 567-589.

Ball, L. J., St. BT Evans, J., Dennis, I., & Ormerod, T. C. (1997). Problem-solving

strategies and expertise in engineering design. Thinking & Reasoning, 3(4), 247-270.

225

Barab, S. (2014). Design-based research: A methodological toolkit for engineering

change. In The Cambridge Handbook of the Learning Sciences, Second Edition (pp.

151-170). Cambridge University Press.

Barab, S. A., & Squire, K. (2004). Design-based research: Putting a stake in the

ground. The Journal of the Learning Sciences, 13(1), 1-14.

doi:10.1207/s15327809jls1301_1

Beckman, K., Coulter, N., Khajenoori, S., & Mead, N. R. (1997). Collaborations:

closing the industry-academia gap. IEEE software, 14(6), 49-57.

Bergmann, R. (2003). Experience management: foundations, development

methodology, and internet-based applications (Vol. 2432). Springer.

Bhatta, S., Goel, A., & Prabhakar, S. (1994). Innovation in analogical design: A

model-based approach. In Artificial Intelligence in Design’94 (pp. 57-74). Springer,

Dordrecht.

Bogdan, R. C., & Biklen, S. K. (2007). Research for education: An introduction to

theories and methods.

Bracewell, R. H., & Sharpe, J. E. E. (1996). Functional descriptions used in computer

support for qualitative scheme generation-'Schemebuilder'. Ai Edam, 10(4), 333-345.

Brand-Gruwel, S., Wopereis, I., & Vermetten, Y. (2005). Information problem

solving by experts and novices: Analysis of a complex cognitive skill. Computers in

Human Behavior, 21(3), 487-508.

Braun, V., & Clarke, V. (2017) Thematic analysis, The Journal of Positive

Psychology, 12:3, 297-298, DOI: 10.1080/17439760.2016.1262613

Brooks, E (1986). No Silver Bullet. In Proceedings of the IFIP Tenth World

Computing Congress

226

Brown, D. C., & Chandrasekaran, B. (2014). Design problem solving: knowledge

structures and control strategies. Morgan Kaufmann.

Buckley, B. C. (2000). Interactive multimedia and model-based learning in biology.

International journal of science education, 22(9), 895-935.

Buckley, B. C., Gobert, J. D., Kindfield, A. C., Horwitz, P., Tinker, R. F., Gerlits, B.,

... & Willett, J. (2004). Model-based teaching and learning with BioLogica™: What

do they learn? How do they learn? How do we know?. Journal of Science Education

and Technology, 13(1), 23-41.

Bürgin, R., & Ritschard, G. (2014). A decorated parallel coordinate plot for

categorical longitudinal data. The American Statistician, 68(2), 98-103.

Chakrabarti, A., & Bligh, T. P. (2001). A scheme for functional reasoning in

conceptual design. Design Studies, 22(6), 493-517.

Chakrabarti, A., Siddharth, L., Dinakar, M., Panda, M., Palegar, N., & Keshwani, S.

(2017, January). Idea Inspire 3.0—A tool for analogical design. In International

Conference on Research into Design (pp. 475-485). Springer, Singapore.

Cherubini, M., Venolia, G., DeLine, R., & Ko, A. J. (2007, April). Let's go to the

whiteboard: how and why software developers use drawings. In Proceedings of the

SIGCHI conference on Human factors in computing systems (pp. 557-566).

Chi, M. T. (2008). Three types of conceptual change: Belief revision, mental model

transformation, and categorical shift. International handbook of research on

conceptual change, 61, 82.

Chi, M. T., & Glaser, R. (1985). Problem-solving ability (p. 27). Learning Research

and Development Center, University of Pittsburgh.

227

Cho, M. H. (2004). The Effects of Design Strategies for Promoting Students' Self-

Regulated Learning Skills on Students' Self-Regulation and Achievements in Online

Learning Environments. Association for Educational Communications and

Technology.

Chren, S., Buhnova, B., Macak, M., Daubner, L., & Rossi, B. (2019, May). Mistakes

in UML diagrams: analysis of student projects in a software engineering course. In

2019 IEEE/ACM 41st International Conference on Software Engineering: Software

Engineering Education and Training (ICSE-SEET) (pp. 100-109). IEEE.

Chrysikou, E. G., & Weisberg, R. W. (2005). Following the wrong footsteps: fixation

effects of pictorial examples in a design problem-solving task. Journal of

Experimental Psychology: Learning, Memory, and Cognition, 31(5), 1134.

Clancy, M. J., & Linn, M. C. (1999). Patterns and pedagogy, in ‘The proceedings of

the thirtieth SIGCSE technical symposium on Computer science education’.

Cobb, P., Confrey, J., DiSessa, A., Lehrer, R., & Schauble, L. (2003). Design

experiments in educational research. Educational researcher, 32(1), 9-13.

Collofello, J. S. (2000). University/industry collaboration in developing a simulation-

based software project management training course. IEEE Transactions on Education,

43(4), 389-393.Conference on Computer Science Education (Koli Calling 2005),

TUCS General Publication

Cross, N. (2004). Expertise in design: an overview. Design studies, 25(5), 427-441.

Cross, N., Christiaans, H., & Dorst, K. (1994). Design expertise amongst student

designers. Journal of Art & Design Education, 13(1), 39-56.

Cross, N., Christiaans, H., & Dorst, K. (Eds.). (1996). Analysing design activity.

Wiley.

228

Cunningham, K. (2020, August). Purpose-first Programming: A Programming

Learning Approach for Learners who Care Most About What Code Achieves. In

Proceedings of the 2020 ACM Conference on International Computing Education

Research (pp. 348-349).

Darke, J. (1979). The primary generator and the design process. Design studies, 1(1),

36-44.

Dasgupta, C. (2019). Improvable models as scaffolds for promoting productive

disciplinary engagement in an engineering design activity. Journal of Engineering

Education, 108(3), 394-417.

Dasgupta, C. (2019). Improvable models as scaffolds for promoting productive

disciplinary engagement in an engineering design activity. Journal of Engineering

Education, 108(3), 394-417.

Davis, A., Overmyer, S., Jordan, K., Caruso, J., Dandashi, F., Dinh, A., ... & Ta, A.

(1993, May). Identifying and measuring quality in a software requirements

specification. In [1993] Proceedings First International Software Metrics Symposium

(pp. 141-152). IEEE.

Dinar, M., Shah, J. J., Cagan, J., Leifer, L., Linsey, J., Smith, S. M., & Hernandez, N.

V. (2015). Empirical studies of designer thinking: past, present, and future. Journal of

Mechanical Design, 137(2).

DiSessa, A. A. (1993). Toward an epistemology of physics. Cognition and

instruction, 10(2-3), 105-225.

DiSessa, A. A. (2014). A history of conceptual change research: Threads and fault

lines.

Dole, J. A., & Sinatra, G. M. (1998). Reconceptalizing change in the cognitive

construction of knowledge. Educational psychologist, 33(2-3), 109-128.

229

Drappa, A., & Ludewig, J. (2000, June). Simulation in software engineering training.

In Proceedings of the 22nd international conference on Software engineering (pp.

199-208). Dublin, Ireland. Amsterdam: Elsevier, pp. 1069-1076.

Duit, R., Treagust, D., & Widodo, A. (2008). Teaching science for conceptual change:

Theory and practice. In International handbook of research on conceptual change

(pp. 629-646). Routledge.

Dym, C. L., Agogino, A. M., Eris, O., Frey, D. D., & Leifer, L. J. (2005). Engineering

design thinking, teaching, and learning. Journal of engineering education, 94(1), 103-

120.

Eckerdal, A., McCartney, R., Mostro¨m, J.E., Ratcliffe M., & Zander, C. (2006b).

Comparing student software designs using semantic categorization.

Eckerdal, A., McCartney, R., Moström, J. E., Ratcliffe, M., & Zander, C. (2006). Can

graduating students design software systems?. ACM SIGCSE Bulletin, 38(1), 403-407.

Eckerdal, A., McCartney, R., Moström, J. E., Ratcliffe, M., & Zander, C. (2006a).

Categorizing student software designs: Methods, results, and implications. Computer

Science Education, 16(3), 197-209.

Efklides, A. (2009). The role of metacognitive experiences in the learning process.

Psicothema, 21(1), 76-82.

Ellis, H. J. (Ed.). (2008). Software Engineering: Effective Teaching and Learning

Approaches and Practices: Effective Teaching and Learning Approaches and

Practices. IGI Global.

Erden, M. S., Komoto, H., van Beek, T. J., D'Amelio, V., Echavarria, E., &

Tomiyama, T. (2008). A review of function modeling: Approaches and applications.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AI

EDAM, 22(2), 147.

230

Fiorineschi, L., Rotini, F., & Rissone, P. (2016). A new conceptual design approach

for overcoming the flaws of functional decomposition and morphology. Journal of

Engineering Design, 27(7), 438-468.

Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of

cognitive–developmental inquiry. American psychologist, 34(10), 906.

Fry, H., Ketteridge, S., & Marshall, S. (2008). Understanding student learning. In A

handbook for teaching and learning in higher education (pp. 26-44). Routledge.

Galle, P. (2009). The ontology of Gero's FBS model of designing. Design Studies,

30(4), 321-339.

Gasparini, A. (2015, February). Perspective and use of empathy in design thinking. In

ACHI, the eight international conference on advances in computer-human

interactions (pp. 49-54).

Gero, J. S., & Kannengiesser, U. (2014). The function-behaviour-structure ontology

of design. In An anthology of theories and models of design (pp. 263-283). Springer,

London.

Gero, J., Kan, J. and Pourmohamadi, M. 2011. Analysing design protocols:

Development of methods and tools. . In ICORD 11: Proceedings of the 3rd

International Conference on Research into Design Engineering. (2011), 3-10.

Gibbs, G. R. (2007). Thematic coding and categorizing. Analyzing qualitative data,

703, 38-56.

Giering, J. A. (2012). Use of evaluation to design quality online learning:

understanding the shared experience.

Gilhooly, R. H. K. (1997). Introduction domains, paradigms, and methods in the study

of expertise. Thinking & Reasoning, 3(4), 241-246.

231

Gnatz, M., Kof, L., Prilmeier, F., & Seifert, T. (2003, March). A practical approach of

teaching software engineering. In Proceedings 16th Conference on Software

Engineering Education and Training, 2003.(CSEE&T 2003). (pp. 120-128). IEEE.

Goel, A. K., de Silva Garza, A. G., Grué, N., Murdock, J. W., Recker, M. M., &

Govindaraj, T. (1996, June). Towards design learning environments—I: Exploring

how devices work. In International conference on intelligent tutoring systems (pp.

493-501). Springer, Berlin, Heidelberg.

Goel, A., Rugaber, S., & Vattam, S. (2009). Structure, behavior & function of

complex systems: The SBF modeling language. International Journal of AI in

Engineering Design, Analysis and Manufacturing, 23(1), 23-35.

Goldschmidt, G. (2004). Design representation: Private process, public image. In

Design representation (pp. 203-217). Springer, London.

Goldschmidt, G. (2014). Linkography: unfolding the design process. Mit Press.

Goold, A., & Horan, P. (2002, February). Foundation software engineering practices

for capstone projects and beyond. In Proceedings 15th Conference on Software

Engineering Education and Training (CSEE&T 2002) (pp. 140-146). IEEE.

Grant, A. M., & Berry, J. W. (2011). The necessity of others is the mother of

invention: Intrinsic and prosocial motivations, perspective taking, and creativity.

Academy of management journal, 54(1), 73-96.

Halling, M., Zuser, W., Kohle, M., & Biffl, S. (2002, February). Teaching the unified

process to undergraduate students. In Proceedings 15th Conference on Software

Engineering Education and Training (CSEE&T 2002) (pp. 148-159). IEEE.

Harman, G. (1986). Change in view Cambridge MA.

Hatcher, G., Ion, W., Maclachlan, R., Marlow, M., Simpson, B., Wilson, N., &

Wodehouse, A. (2018). Using linkography to compare creative methods for group

ideation. Design Studies, 58, 127-152.

232

Hay, L., Duffy, A. H., McTeague, C., Pidgeon, L. M., Vuletic, T., & Grealy, M.

(2017). Towards a shared ontology: A generic classification of cognitive processes in

conceptual design. Design Science, 3.

Hay, L., Duffy, A. H., McTeague, C., Pidgeon, L. M., Vuletic, T., & Grealy, M.

(2017). A systematic review of protocol studies on conceptual design cognition:

Design as search and exploration. Design Science, 3.

Hmelo-Silver, C. E., & Pfeffer, M. G. (2004). Comparing expert and novice

understanding of a complex system from the perspective of structures, behaviors, and

functions. Cognitive science, 28(1), 127-138.

Hmelo, C. E., Holton, D. L., & Kolodner, J. L. (2000). Designing to learn about

complex systems. The journal of the learning sciences, 9(3), 247-298.

Hokanson, B. (2001, August). Digital image creation and analysis as a means to

examine learning and cognition. In International Conference on Cognitive

Technology (pp. 226-232). Springer, Berlin, Heidelberg.

Hughes, J., & Parkes, S. (2003). Trends in the use of verbal protocol analysis in

software engineering research. Behaviour & Information Technology, 22(2), 127-140.

Hungerford, B. C., Hevner, A. R., & Collins, R. W. (2004). Reviewing software

diagrams: A cognitive study. IEEE Transactions on Software Engineering, 30(2), 82-

96.

Hutchins, E., & Klausen, T. (1996). Distributed cognition in an airline cockpit.

Cognition and communication at work, 15-34.

Hyde, K. F. (2000). Recognising deductive processes in qualitative research.

Qualitative market research: An international journal.

IEEE (1998). IEEE Recommended Practice for Software Requirements Specifications.

233

IEEE Std. 830. The Institute of Electrical and Electronics Engineers, Inc., USA.

IEEE Standards Coordinating Committee. (1990). IEEE Standard Glossary of

Software Engineering Terminology (IEEE Std 610.12-1990). Los Alamitos. CA:

IEEE Computer Society, 169.

ISO (2001). Software Product Evaluation-Quality Characteristics and Guidelines for

their Use, ISO/IEC Standard 9126, Switzerland.

Iwasaki, Y., Fikes, R., Vescovi, M., & Chandrasekaran, B. (1993, January). How

things are intended to work: Capturing functional knowledge in device design. In

IJCAI (pp. 1516-1522).

Jackson, D. (2013). Conceptual design of software: A research agenda.

Jansson, D. G., & Smith, S. M. (1991). Design fixation. Design studies, 12(1), 3-11.

Jiang, H., & Yen, C. C. (2013). Design Thinking in Conceptual Design Processes: A

Comparison Between Industrial and Engineering Design Students. Advances in

Industrial Design Engineering, 29.

Jin, Y., & Benami, O. (2010). Creative patterns and stimulation in conceptual design.

Ai Edam, 24(2), 191-209.

Johri, A., & Lohani, V. K. (2011). Framework for improving engineering

representational literacy by using pen-based computing. International Journal of

Engineering Education, 27(5), 958.

Jonassen, D. H. (2000). Toward a design theory of problem solving. Educational

technology research and development, 48(4), 63-85.

Jonassen, D. H., & Easter, M. A. (2013). Model building for conceptual change. In

International handbook of research on conceptual change (pp. 580-600).

234

Joshi, A. (2009). Usability goals setting tool. In 4th Workshop on Software and

Usability Engineering Cross-Pollination: Usability Evaluation of Advanced

Interfaces, Uppsala.

Kan, J. W., & Gero, J. S. (2017). Quantitative methods for studying design protocols.

Dordrecht: Springer.

Kannengiesser, U., & Gero, J. S. (2019). Design thinking, fast and slow: A framework

for Kahneman’s dual-system theory in design. Design Science, 5.

Karimi, P., Grace, K., Davis, N., & Maher, M. L. (2018, July). Creative sketching

apprentice: Supporting conceptual shifts in sketch ideation. In International

Conference on-Design Computing and Cognition (pp. 721-738). Springer, Cham.

Kavakli, M., & Gero, J. S. (2002). The structure of concurrent cognitive actions: a

case study on novice and expert designers. Design studies, 23(1), 25-40.

Kim, J., Jo, I. H., & Park, Y. (2016). Effects of learning analytics dashboard:

analyzing the relations among dashboard utilization, satisfaction, and learning

achievement. Asia Pacific Education Review, 17(1), 13-24.

Kirsh, D. (2010). Thinking with external representations. AI and Society, 25, 441–

454.

Klerkx, J., Verbert, K., & Duval, E.(2017). Learning analytics dashboards.

In C. Lang, G. Siemens, A. Wise, & D. Gašević (Eds.), The handbook of

learning analytics (pp. 143–150). Society for Learning Analytics Research (SoLAR).

Kopcha, T. J., Schmidt, M. M., & McKenney, S. (2015). Editorial 31 (5): Special

issue on educational design research (EDR) in post-secondary learning environments.

Australasian journal of educational technology, 31(5).

235

Kornecki, A. J. (2000, March). Real-time computing in software engineering

education. In Software Engineering Education and Training, Conference on (pp. 197-

197). IEEE Computer Society.

Kornecki, A. J., Khajenoori, S., Gluch, D., & Kameli, N. (2003, March). On a

partnership between software industry and academia. In Proceedings 16th Conference

on Software Engineering Education and Training, 2003.(CSEE&T 2003). (pp. 60-69).

IEEE.

Kruchten, P. (2005). Casting software design in the function-behavior-structure

framework. IEEE software, 22(2), 52-58.

Lakshmi, T. G., & Iyer, S. (2018). Exploring novice approach to conceptual design of

software. International Society of the Learning Sciences, Inc.[ISLS]..

Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten

thousand words. Cognitive science, 11(1), 65-100.

Lawson, B. (2006). How designers think: The design process demystified. Routledge.

Lawson, B. (2006). How designers think: The design process demystified. Oxford,

UK: Elsevier.

Levy, S. T., & Wilensky, U. (2008). Inventing a “mid level” to make ends meet:

Reasoning between the levels of complexity. Cognition and Instruction, 26(1), 1-47.

Li, P. L. (2016). What makes a great software engineer (Doctoral dissertation).

Lindland, O. I., Sindre, G., & Solvberg, A. (1994). Understanding quality in

conceptual modeling. IEEE software, 11(2), 42-49.

Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., ... &

Simon, B. (2004). A multi-national study of reading and tracing skills in novice

programmers. ACM SIGCSE Bulletin, 36(4), 119-150.

236

Lister, R., Simon, B., Thompson, E., Whalley, J. L., & Prasad, C. (2006). Not seeing

the forest for the trees: novice programmers and the SOLO taxonomy. ACM SIGCSE

Bulletin, 38(3), 118-122.

Ma, L. (2007). Investigating and improving novice programmersâ€™ mental models

of programming concepts (Doctoral dissertation, University of Strathclyde, Glasgow,

UK).

Majumdar, R., & Iyer, S. (2016). iSAT: a visual learning analytics tool for instructors.

Research and practice in technology enhanced learning, 11(1), 16.

Mark Guzdial (April, 2012). https://computinged.wordpress.com/2012/04/04/practice-

is-better-for-learning-facts-worked-examples-are-better-for-learning-skills/

Mark Guzdial (April, 2018) https://computinged.wordpress.com/2018/04/06/how-do-

students-learn-the-notional-machine-developing-a-mental-model-of-program-

behavior/

Marshall, S., & Pennington, G. (2009). Teaching excellence as a vehicle for career

progression. A Handbook for Teaching and Learning in Higher Education, 485.

Martin, L., & Schwartz, D. L. (2009). Prospective adaptation in the use of external

representations. Cognition and Instruction, 27(4), 370-400.

Masur, A., & Salustri, F. A. (2007). The Idea Concept Design Process. In DS 42:

Proceedings of ICED 2007, the 16th International Conference on Engineering

Design, Paris, France, 28.-31.07. 2007 (pp. 315-316).

Mathias, J. R. (1995). A study of the problem-solving strategies used by expert and

novice designers.

Mc Neill, T., Gero, J. S., & Warren, J. (1998). Understanding conceptual electronic

design using protocol analysis. Research in Engineering Design, 10(3), 129-140.

237

McKenney, S., & Reeves, T. C. (2012). Conducting educational design research.

London: Routledge

Medvidovic, N., Rosenblum, D. S., Redmiles, D. F., & Robbins, J. E. (2002).

Modeling software architectures in the Unified Modeling Language. ACM

Transactions on Software Engineering and Methodology (TOSEM), 11(1), 2-57.

Minocha, S., & Sharp, H. (2004). Learner-centred design and evaluation of web-based

e-learning environments. In The 7th HCI educators workshop; Effective Teaching and

Learning in HCI. Preston, United Kingdom.

Monsalve, E. S., Pereira, A. X., & Werneck, V. M. B. (2014). Teaching Software

Engineering through a Collaborative Game. In Overcoming Challenges in Software

Engineering Education: Delivering Non-Technical Knowledge and Skills (pp. 310-

331). IGI Global.

Moody, D. L., & Shanks, G. G. (1994, December). What makes a good data model?

Evaluating the quality of entity relationship models. In International Conference on

Conceptual Modeling (pp. 94-111). Springer, Berlin, Heidelberg.

Moody, D. L., Shanks, G. G., & Darke, P. (1998, November). Improving the quality

of entity relationship models—experience in research and practice. In International

Conference on Conceptual Modeling (pp. 255-276). Springer, Berlin, Heidelberg.

Moore, T. J., Miller, R. L., Lesh, R. A., Stohlmann, M. S., & Kim, Y. R. (2013).

Modeling in engineering: The role of representational fluency in students' conceptual

understanding. Journal of Engineering Education, 102(1), 141-178.

Moritz, S. H., Wei, F., Parvez, S. M., & Blank, G. D. (2005). From objects-first to

design-first with multimedia and intelligent tutoring. ACM SIGCSE Bulletin, 37(3),

99-103.

Morrison, B. B., Margulieux, L. E., & Decker, A. (2020). The curious case of loops.

Computer Science Education, 30(2), 127-154.

238

National Research Council. (2012). Discipline-based education research:

Understanding and improving learning in undergraduate science and engineering.

National Academies Press.

Navarro, E. O., & Van Der Hoek, A. (2005, April). Scaling up: How thirty-two

students collaborated and succeeded in developing a prototype software design

environment. In 18th Conference on Software Engineering Education & Training

(CSEET'05) (pp. 155-162). IEEE.

Nersessian, N. J. (1999). Model-based reasoning in conceptual change. In Model-

based reasoning in scientific discovery (pp. 5-22). Springer, Boston, MA.

Nersessian, N. J. (2010). Mental modeling in conceptual change. International

Journal on Humanistic Ideology, 3(01), 11-48.

Nielsen, J. (1992, June). Finding usability problems through heuristic evaluation. In

Proceedings of the SIGCHI conference on Human factors in computing systems (pp.

373-380).

Niepostyn, S. J. (2015). The sufficient criteria for consistent modelling of the use case

realization diagrams with a new functional-structure-behaviour UML diagram.

Przegląd Elektrotechniczny Sigma NOT, 2, 31-35.

Niepostyn, S. J., & Bluemke, I. (2012, June). The Function-Behaviour-Structure

Diagram for Modelling Workflow of Information Systems. In International

Conference on Advanced Information Systems Engineering (pp. 425-439). Springer,

Berlin, Heidelberg. No. 41, Turku, Finland (pp. 57 – 64).

Nuldén, U., & Scheepers, H. (2000). Understanding and learning about project failure

and escalation: Simulation in action. In Second Nordic Workshop on Computer

Supported Collaborative Learning and Knowledge Empowerment (p. 63).

Nussbaum, J. (1989). Classroom conceptual change: philosophical perspectives.

International Journal of Science Education, 11(5), 530-540.

239

Oh, E. (2002, May). Teaching software engineering through simulation. In

Proceedings of the 2002 International Conference on Software Engineering Doctoral

Symposium.

Olivé, A. (2000). An introduction to conceptual modeling of information systems.

Advanced database technology and design. Artech House, 25-57.

Pahl, G., & Beitz, W. (2013). Engineering design: a systematic approach. Springer

Science & Business Media.

Pan, J., Liddicoat, A., Harris, J. G., & Shepherd, L. (2010). Assessing Curriculum

Improvement Through Senior Projects.

Pan, R., Kuo, S. P., & Strobel, J. (2010). Novice students' difficulties and remedies

with the conceptualization phase of design. In American Society for Engineering

Education. American Society for Engineering Education.

Pan, R., Shih-Ping, K. and Johannes, S. 2010. Novice students' difficulties and

remedies with the conceptualization phase of design. American Society for

Engineering Education. (2010).

Parker, S. K., & Axtell, C. M. (2001). Seeing another viewpoint: Antecedents and

outcomes of employee perspective taking. Academy of Management Journal, 44(6),

1085-1100.

Peneul, W., Fishman, B., Chen, B., & Sabelli, N. (2011). Organizing research and

development at the intersection of learning, implementing, and design. Educational

Researcher, 40(7), 331-337.

Petre, M. (2009, August). Insights from expert software design practice. In

Proceedings of the 7th joint meeting of the European software engineering conference

and the ACM SIGSOFT symposium on The foundations of software engineering (pp.

233-242).

240

Petre, M., van der Hoek, A., & Baker, A. Editorial in Design Studies. Volume, 31,

533-544.

Petre, M. (2013, May). UML in practice. In 2013 35th international conference on

software engineering (icse) (pp. 722-731). IEEE.

Pfahl, D., Koval, N., & Ruhe, G. (2001, April). An experiment for evaluating the

effectiveness of using a system dynamics simulation model in software project

management education. In Proceedings Seventh International Software Metrics

Symposium (pp. 97-109). IEEE.

Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982).

Accommodation of a scientific conception: Toward a theory of conceptual change.

Science education, 66(2), 211-227.

Pourmohamadi, M., & Gero, J. S. (2011). LINKOgrapher: An analysis tool to study

design protocols based on FBS coding scheme. In DS 68-2: Proceedings of the 18th

International Conference on Engineering Design (ICED 11), Impacting Society

through Engineering Design, Vol. 2: Design Theory and Research Methodology,

Lyngby/Copenhagen, Denmark, 15.-19.08. 2011.

Pressman, R. S. (2005). Software engineering: a practitioner's approach. Palgrave

macmillan.

Qian, Y., & Lehman, J. (2017). Students’ misconceptions and other difficulties in

introductory programming: A literature review. ACM Transactions on Computing

Education (TOCE), 18(1), 1-24.

Quintana, C., Krajcik, J., Soloway, E., & Norris, C. (2002). A framework for

understanding the development of educational software. In The human-computer

interaction handbook: fundamentals, evolving technologies and emerging

applications (pp. 823-834).

241

Quintana, C., Reiser, B. J., Davis, E. A., Krajcik, J., Fretz, E., Duncan, R. G., ... &

Soloway, E. (2004). A scaffolding design framework for software to support science

inquiry. The journal of the learning sciences, 13(3), 337-386.

Quintana, C., Reiser, B. J., Davis, E. A., Krajcik, J., Fretz, E., Duncan, R. G., ... &

Soloway, E. (2004). A scaffolding design framework for software to support science

inquiry. The journal of the learning sciences, 13(3), 337-386.

Richey, R. C., & Klein, J. D. (2014). Design and development research. In Handbook

of research on educational communications and technology (pp. 141-150). Springer,

New York, NY.

Ritschard, G., Bürgin, R., & Studer, M. (2013). Exploratory mining of life event

histories. Contemporary issues in exploratory data mining in the behavioral sciences,

221-253.

Ritschard, G., Bürgin, R., and Studer, M. (2014), "Exploratory Mining of Life Event

Histories", In McArdle, J.J. & Ritschard, G. (eds) Contemporary Issues in

Exploratory Data Mining in the Behavioral Sciences. Series: Quantitative

Methodology, pp. 221-253. New York: Routledge.

Ritschard, G., Bürgin, R., and Studer, M. (2014), "Exploratory Mining of Life Event

Histories", In McArdle, J.J. & Ritschard, G. (eds) Contemporary Issues in

Exploratory Data Mining in the Behavioral Sciences. Series: Quantitative

Methodology, pp. 221-253. New York: Routledge.

Rittel, H. W., & Webber, M. M. (1973). Dilemmas in a general theory of planning.

Policy sciences, 4(2), 155-169.

Rosenman, M. A., Gero, J. S., & Oxman, R. E. (1991). What's in a case: the use of

case bases, knowledge bases, and databases in design.

Salomon, G., Perkins, D. N., & Globerson, T. (1991). Partners in cognition:

Extending human intelligence with intelligent technologies. Educational researcher,

20(3), 2-9.

242

Schilling Jr, W. W., & Sebern, M. J. (2013). Teaching software engineering: An

active learning approach. The ASEE Computers in Education (CoED) Journal, 4(1),

13.

Schön, D. (1938). The reflective practitioner. New York, 1083.

Schunk, D. H. (1998). Teaching Elementary Students to Self-Regulate Practice. Self-

regulated learning: From teaching to self-reflective practice, 137.

Schwartz, D. L. (1995). The emergence of abstract representations in dyad problem

solving. The journal of the learning sciences, 4(3), 321-354.

Seitamaa-Hakkarainen, P., & Hakkarainen, K. (2001). Composition and construction

in experts' and novices' weaving design. Design Studies, 22(1), 47-66.

Shavelson, R. J., Phillips, D. C., Towne, L., & Feuer, M. J. (2003). On the science of

education design studies. Educational researcher, 32(1), 25-28.

Shin, J., Rusakov, A., & Meyer, B. (2014). Teaching Software Engineering through

Robotics. arXiv preprint arXiv:1406.4458.

Sien, V. Y. (2011). An investigation of difficulties experienced by students

developing unified modelling language (UML) class and sequence diagrams.

Computer Science Education, 21(4), 317-342.

Singer, S. R., Nielsen, N. R., & Schweingruber, H. A. (2012). Discipline-based

education research. Washington, DC: The National Academies.

Soloway, E. (1986). Learning to program= learning to construct mechanisms and

explanations. Communications of the ACM, 29(9), 850-858.

Sonnentag, S. (1998). Expertise in professional software design: A process study.

Journal of applied psychology, 83(5), 703.

243

Sonnentag, S., Niessen, C., & Volmer, J. (2006). Expertise in software design.

Ssemugabi, S., & De Villiers, M. R. (2010). Effectiveness of heuristic evaluation in

usability evaluation of e-learning applications in higher education. South African

computer journal, 2010(45), 26-39.

Stevens, S. M. (1989). Intelligent interactive video simulation of a code inspection.

Communications of the ACM, 32(7), 832-843.

Suwa, M., Gero, J., & Purcell, T. (2000). Unexpected discoveries and S-invention of

design requirements: important vehicles for a design process. Design studies, 21(6),

539-567.

Tang, A., Aleti, A., Burge, J., & van Vliet, H. (2010). What makes software design

effective?. Design Studies, 31(6), 614-640.

Tang, H. H. (2002). Exploring the roles of sketches and knowledge in the design

process. Department of Architectural and Design Science, Faculty of Architecture,

University of Sydney.

Teasley, S. D. (2017). Student facing dashboards: One size fits all?. Technology,

Knowledge and Learning, 22(3), 377-384.

Teel, S., Schweitzer, D., & Fulton, S. (2012). Teaching undergraduate software

engineering using open source development tools. Issues in Informing Science and

Information Technology, 9, 063-073.

Thomas, L., Eckerdal, A., McCartney, R., Moström, J. E., Sanders, K., & Zander, C.

(2014, July). Graduating students' designs: through a phenomenographic lens. In

Proceedings of the tenth annual conference on International computing education

research (pp. 91-98).

Tremblay, G. (2001). Software Design. SWEBOK, 35.

244

Trends in Concept Design, PTC study, July 2011 – http://www.ptc.com/go/concept-

design

Umeda, Y., Ishii, M., Yoshioka, M., Shimomura, Y., & Tomiyama, T. (1996).

Supporting conceptual design based on the function-behavior-state modeler. Ai Edam,

10(4), 275-288.

Van den Akker, J., Gravemeijer, K., McKenney, S., & Nieveen, N. (Eds.). (2006).

Educational design research. Routledge.

Viswanathan, V. K., & Linsey, J. S. (2013). Design fixation and its mitigation: a study

on the role of expertise. Journal of Mechanical Design, 135(5).

Volet, S. E., & Järvelä, S. E. (2001). Motivation in learning contexts: Theoretical

advances and methodological implications. Pergamon Press.

Von Aufschnaiter, C., & Rogge, C. (2015). Conceptual change in learning.

Encyclopedia of science education, 209-218.

Vosniadou, S. (2007). Conceptual change and education. Human development, 50(1),

47-54.

Vosniadou, S. (2019, April). The Development of Students' Understanding of

Science. In Frontiers in Education (Vol. 4, p. 32). Frontiers.

Vosniadou, S. (2019, April). The Development of Students' Understanding of

Science. In Frontiers in Education (Vol. 4, p. 32). Frontiers.

Vosniadou, S., Chi, M. T., Ohlsson, S., Cosejo, D. D., Brown, D. E., & Nerserssian,

N. J. (2011). New Approaches to the Problem of Conceptual Change in the Learning

of Science and Math. In Proceedings of the Annual Meeting of the Cognitive Science

Society (Vol. 33, No. 33).

245

Wang, F., & Hannafin, M. J. (2005). Design-based research and technology-enhanced

learning environments. Educational technology research and development, 53(4), 5-

23.

White, R., & Gunstone, R. F. (2008). The conceptual change approach and the

teaching of science. In International handbook of research on conceptual change (pp.

619-628). Routledge.

Wilke, W. (1999). Knowledge management for intelligent sales support in electronic

commerce. IOS Press.

Winne, P. H., & Hadwin, A. F. (2008). The weave of motivation and self-regulated

learning In: Schunk DH, Zimmerman BJ, editors. Motivation and self-regulated

learning: Theory, research, and application.

Wohlin, C., & Regnell, B. (1999, March). Achieving industrial relevance in software

engineering education. In Proceedings 12th Conference on Software Engineering

Education and Training (Cat. No. PR00131) (pp. 16-25). IEEE.

Wood, K. L., Jensen, D., Bezdek, J., & Otto, K. N. (2001). Reverse engineering and

redesign: courses to incrementally and systematically teach design. Journal of

Engineering Education, 90(3), 363-374.

Wood, K. L., Jensen, D., Bezdek, J., & Otto, K. N. (2001). Reverse engineering and

redesign: courses to incrementally and systematically teach design. Journal of

Engineering Education, 90(3), 363-374.

Wynn, D. C., & Clarkson, P. J. (2018). Process models in design and development.

Research in Engineering Design, 29(2), 161-202.

Xun, G. E., & Land, S. M. (2004). A conceptual framework for scaffolding III-

structured problem-solving processes using question prompts and peer interactions.

Educational technology research and development, 52(2), 5-22.

246

Yeh, M. K. C. (2018). Examining novice programmers’ software design strategies

through verbal protocol analysis. International Journal of Engineering Education,

34(2), 458-470.

Yilmaz, S., Daly, S. R., Seifert, C. M., & Gonzalez, R. (2015). How do designers

generate new ideas? Design heuristics across two disciplines. Design Science, 1.

Zhang, J. (1997). The nature of external representations in problem solving. Cognitive

science, 21(2), 179-217.

Zou, J., & Du, Q. (2013). A Functional Reasoning Cube Model for Conceptual

Design of Mechatronic Systems. Strojniski Vestnik/Journal of Mechanical

Engineering, 59(5).

247

List of Publications

In Journals

1. Lakshmi, T.G. & Iyer, S (2020). Applying the Function-Behaviour-Structure

(FBS) design lens to explore novices’ approach in software conceptual design.

Computer Science Education. Under review

2. Lakshmi, T.G. & Iyer, S (2020). Fostering conceptual change in software

design. IEEE Transactions on Education. Under review.

In Peer-reviewed conference proceedings

1. Deepti Reddy, Kavya Alse, Lakshmi T.G., Prajish Prasad, and Sridhar Iyer.

(2021). Learning Environments for Fostering Disciplinary Practices in CS

Undergraduates. In Proceedings of the 52nd ACM Technical Symposium on

Computer Science Education (SIGCSE '21). Association for Computing

Machinery, New York, NY, USA, 1287. DOI:

https://doi.org/10.1145/3408877.3439677

2. Lakshmi, T.G., & Iyer, S. (2020, Jul). Teaching-learning of software

conceptual design via function-behaviour-structure framework.13th Workshop

on cooperative and human aspects of software engineering:(CHASE 2020). In

2020 42nd International Conference on Software Engineering (ICSE). IEEE.

3. Lakshmi, T. G. & Herold, P. C. (2019, December). Heuristic Evaluation and

User Experience Redesign of 'Think & Link' Learning Environment–A Case

Study. In 2019 IEEE Tenth International Conference on Technology for

Education (T4E) (pp. 166-169). IEEE.

4. Lakshmi, T. G. (2018, August). Developing Students' Conceptual Design

Skills for Software Engineering. In Proceedings of the 2018 ACM Conference

on International Computing Education Research (pp. 278-279).

248

5. Lakshmi, T. G. & Iyer, S. (2018). Exploring Novice Approach to Conceptual

Design of Software. In Kay, J. and Luckin, R. (Eds.) Rethinking Learning in

the Digital Age: Making the Learning Sciences Count, 13th International

Conference of the Learning Sciences (ICLS) 2018, Volume 3. London, UK:

International Society of the Learning Sciences

6. Lakshmi, T. G., Prasad, P., & Iyer, S. (2017, July). A System for Developing

Operationalization Skills through Problem Decomposition. In Advanced

Learning Technologies (ICALT), 2017 IEEE 17th International Conference on

(pp. 427-429). IEEE.

7. A. Raina, T. G. Lakshmi and S. Murthy. (2017). "CoMBaT: Wearable

Technology Based Training System for Novice Badminton Players," 2017

IEEE 17th International Conference on Advanced Learning Technologies

(ICALT), Timisoara, 2017, pp. 153-157, doi: 10.1109/ICALT.2017.96.

8. Lakshmi, T. G., Narayana, S., Penugonda, H., Vaidya, D., Poonia, V.,

Ganguly, S., & Murthy, S. (2017). Pivoteeing: a flipped approach in a

postgraduate solid state devices course. In Proceedings of the 25th

International Conference on Computers in Education.

9. Lakshmi, T. G., Narayana, S., Prasad, P., Murthy, S., & Chandrasekharan, S.

(2016). Geometry-via-Gestures: Design of a gesture based application to teach

3D Geometry. In Proceedings of the 24th international conference on

computers in education (pp. 180-189). Mumbai, India: Asia‐Pacific Society

for Computers in Education.

10. S. Narayana, P. Prasad, T. G. Lakshmi and S. Murthy. (2016)."Geometry via

Gestures: Learning 3D Geometry Using Gestures," 2016 IEEE Eighth

International Conference on Technology for Education (T4E), Mumbai, 2016,

pp. 26-33, doi: 10.1109/T4E.2016.014.

11. K. Alse, L. Ganesh, P. Prasad, M. Chang and S. Iyer. (2016). "Assessing

Students' Conceptual Knowledge of Computer Networks in Open

Wonderland," 2016 IEEE 16th International Conference on Advanced

249

Learning Technologies (ICALT), Austin, TX, 2016, pp. 513-517, doi:

10.1109/ICALT.2016.22.

12. Ganesh, L. (2014, December). Board Game as a Tool to Teach Software

Engineering Concept--Technical Debt. In Technology for Education (T4E),

2014 IEEE Sixth International Conference on (pp. 44-47). IEEE.

13. Ganesh, L. (2013, December). The effect of comic strips as a supplementary

material to teach computer networks. In Technology for Education (T4E),

2013 IEEE Fifth International Conference on (pp. 184-191). IEEE.

250

Acknowledgements
In this section I thank all people in the Ph.D. journey as well as people who lead me

up to the journey. I begin this section by acknowledging my privileges, which I have

been bestowed with. These privileges start with being born into a family that believes

education as an important aspect of life. My mother (Uma Ganesh) always pushed me

to find learning opportunities in all endeavours. My father (T V Ganesh) was the one

who taught me work ethics by setting an example. He rose into the higher echelons of

a public sector bank, by sheer hard work and grit. The values that my parents instilled

in me, I would always be grateful to them.

 This thesis is the result of the guidance of my supervisor - Prof. Sridhar Iyer.

When I look back, it all started with his questions. He let me meander through all the

possible pathways, but he always knew when and where to align the research focus. I

thank him, for giving me the freedom in my research work and instilling confidence

in me. I can only hope to live up to his expectations always from here onwards.

 My chief-mentor during Ph.D., who has turned into a mentor for life, Prof.

Sahana Murthy was always generous with her time for me. I have shared my research

work as well as my self-doubts and always found a patient listener and advisor in her.

She took me under her wings and instilled self-belief in all my strengths. She along

with my other RPC member, Prof. Sasi Kumar, have provided the critical comments

at the right moments. This has strengthened the thesis and helped me grow as a

researcher. I thank both of them.

 My teachers during the Ph.D. journey have made me the researcher that I am

today. Prof. Sanjay - his deep discussions and take on cognition/learning have

provided me with perspectives to think. Prof. Maiga –his childlike enthusiasm in

building and creating learning environments has inspired the software developer in

me. Prof. Chandan – his ability to remain comfortable amidst ambiguity has

motivated me to find calmness during uncertainty. Prof Ram – his ability to be gentle

while critical has made me realize the importance of being kind while giving

feedback. I thank all the teachers for imparting the knowledge and making me realize

these qualities.

These six years of research journey that I undertook, my peers in this learning

process were Prajish and Soumya, my batch mates. Prajish was extremely supportive

251

and stood by me at various points of my thesis journey. As we plunged into our

individual thesis, his constant checks on me, nudged me to keep working towards the

deadlines. Soumya has been my friendly companion. Her love for fun and laughter

has made me tide over some of the rocky roads in this journey. I look forward to

engaging in many research projects in the near future with both of them. To my batch-

mates (batchies), I am thankful for their intellectual engagement and their constant

support throughout.

 This thesis would not have completed with the design and development

support that I received from my student interns (Keval and Swapnil), my colleagues

Rahul, Herold and developers Mangesh and Varun. They shared my vision and helped

me realize the design of ‘think & link’. I thank all of them. The logistics support

provided by Pallavi, Vidya, Seema and Prakash (Sr & Jr) is immeasurable. They are

the silent supporters of the EdTech department and research scholars (RS),

specifically.

 The seniors in the department have been a constant source of inspiration.

These amazing women inspired me and made me realize that this journey seems

possible, especially during difficult times. I thank Madhuri mam – for sharing her

journey and encouraging me to pursue EdTech Ph.D.; Gargi mam – for constant

encouragement and reassuring words; Mrinal mam – for showing that pursuit of

excellence does not mean giving up other aspects of your life; Rekha mam – for

finding humour in the process and sharing it with everyone in the lab; Deepti mam -

for managing the most stressful times with calm and composure. I thank all of them.

 I also thank my seniors, Rwito and Aditi, for their timely and critical reviews

of my work. Their comments have shaped many of my papers and ideas. I thank

Anurag - my immediate senior, who supported me with all the critical information and

guided me through the process. I thank Balraj for his dank humour, Veenita for her

trusted advice and JK for all the advice on everything under the sun. Ashu and

Rumana, thank you for the kind words whenever I needed them. To all the other RS in

the lab, I would like to thank you for your companionship and joie de vivre.

 My best friend Sush is my rock of Gibraltar. I thank her for being there always

for me. For calling on my lapses when I needed them and more importantly not

calling on them when I don’t. Sush, I can’t thank you but I need to. To my friends

Jigna, Parth, Animesh, Sushmita, Nisha, Karthik, Harini, Venky, thank you for

making me feel part of the gang.

252

My pranams to Kamalamma, my grandmother, who couldn’t see me at the

finishing line of this Ph.D. journey. She was the matriarch of my family. I am sure she

would be smiling from above. I fondly miss the presence of my best friend, Haripriya.

My life would not have been the same without these people. I thank them for their

presence in my life.

To my family, starting with my in-laws (Raji amma, Ramani appa) whom I

dedicate this thesis. I can’t thank them enough for their selfless support. My sister

(Kamala) and brother-in-law (Raj) always kept me in their prayers and sent me the

positive energy when I needed it the most. I thank my sister-in-law (Sangeeta) and

brother (Sai) for believing in me. All my cousins, nieces and nephews (kamalamma

korangnaes) for their love and laughter, thank you.

To my children- Ashwath and Aparna. Ashwath I thank you for being the

listener, critique and friend. Your euphemisms crack me up, but they are full of

worldly wisdom. Ashwath: thank you for being you. Aparna- she has been my

constant companion as I began my research journey. In my first year of Ph.D., I was

carrying Aparna. As I see her grow as an individual, I also saw my thesis grow.

Aparna: thank you for being with me. In both my kids I had wonderful cheerleaders

who would celebrate every milestone however small they might be.

Last but not the least, Santosh – my partner in life. Thank you Santosh, for

making me realize I have wings and also for being the wind beneath my wings. I look

forward to the rest of the journey with you as always by my side.

