
Fostering Software Design Evaluation Skills
in Students using a Technology-enhanced
Learning Environment

Prajish Prasad
154380001

1

under the guidance of Prof Sridhar Iyer
1st July 2021

Thesis Defense Presentation

Motivation

● NIST study -
2002 - Software bugs cause the US economy - $59.5 billion (Newman, 2002)

● 2016 - $1.1 trillion (Cohane, 2017)

● 1/3rd of costs - earlier identification of software defects

● NASA study - Cost to fix bugs escalates exponentially as the project
progresses (Haskins et al., 2004)

2

Importance of rigorous and
effective software evaluation
in earlier phases of the
development cycle

3

Software Evaluation: An Example
Automated Door Locking System:

4

Requirements:

1. If the passcode hasn't been set yet, the user
can register and enter a required passcode.

2. When the user chooses the lock option, and
enters the correct passcode, the door
should lock. If the passcode is incorrect, the
door remains unlocked.

3. When the user chooses the unlock option,
and enters the correct passcode, the door
should unlock. If the passcode is incorrect,
the door remains locked.

Requirements Modelled using Unified Modelling Language Diagrams

5

Class diagram

Sequence diagram for the lock use case

Requirement: When the user chooses the lock
option, and enters the correct passcode, the door
should lock. If the passcode is incorrect, the door
remains unlocked.

Perspectives on Evaluating a Given Design

6

Requirements Model (UML diagrams) Language

Audience interpretation

Syntax

Syntax: How well the model
corresponds to the rules of the
language

Semantics

Semantics: How well the model
corresponds to the requirements

Pragmatics

Pragmatics: How well the model can
be interpreted by different
stakeholders

(Lindland et al., 1994)

Teaching-Learning of Software Design Evaluation

● Software engineering courses - focus on syntax, but not much on semantics
(Westphal 2019)

● Evaluating for semantic quality is difficult

7

Requirements Model (UML diagrams)
Semantics

Evaluating software designs for semantic quality:

Given a set of goals/requirements and a software system design (UML
diagrams) does the design fully satisfy all these goals/requirements?

Broad Research Objective:

“Design and develop a
technology-enhanced learning environment (TELE)
which enables students to
effectively evaluate a software design
against the given requirements”

8

Key Questions Answered in this Thesis

1. Existing gap in teaching-learning of software design evaluation

2. Student difficulties

3. Pedagogical strategies for effective software design evaluation

9

Overarching Research Methodology:
Design Based Research

10Adapted from (Plomp, 2013)

11

12

Scope of the Thesis

13

Objective

Develop
design evaluation
skills in students

Context

Students provided
with requirements

and design diagrams
(class and sequence

diagrams)

Target population

Computer science
undergraduates with
basic understanding

of class and
sequence diagrams

Intervention

VeriSIM:
1. Module 1 -
Self-paced TELE

2. Module 2 -
Worksheet activity
facilitated by
instructor

Key Questions Answered in this Thesis

1. Existing gap in teaching-learning of software design evaluation

2. Student difficulties

3. Pedagogical strategies for effective software design evaluation

14

15

Literature Review

Teaching-
Learning of

Software
Design

Evaluation

Student
Difficulties

Expert
Practices and

Strategies

16

Literature Review

Teaching-
Learning of

Software
Design

Evaluation

Student
Difficulties

Expert
Practices and

Strategies

Evaluating a software design for its
semantic quality

● Is hard (Brechner, 2003)
● Has not been sufficiently explored

(Westphal, 2019)

17

Literature Review

Teaching-
Learning of

Software
Design

Evaluation

Expert
Practices and

Strategies

Evaluating a software design for its
semantic quality

● Is hard (Brechner, 2003)
● Has not been sufficiently explored

(Westphal, 2019)

Student
Difficulties

Students have difficulties in
designing software systems
(Eckerdal et al., 2006; Loftus et al., 2011)

● Insufficient understanding of
domain and specifications
(Sien, 2011; Chren et al., 2019)

● Understanding relationships
between diagrams
(Burgueño et al.,2018)

18

Literature Review

Teaching-
Learning of

Software
Design

Evaluation

Student
Difficulties

Expert
Practices and

Strategies

Evaluating a software design for its
semantic quality

● Is hard (Brechner, 2003)
● Has not been sufficiently explored

(Westphal, 2019)

Students have difficulties in
designing software systems
(Eckerdal et al., 2006; Loftus et al., 2011)

● Insufficient understanding of
domain and specifications
(Sien, 2011; Chren et al., 2019)

● Understanding relationships
between diagrams
(Burgueño et al.,2018)

Expert Practices and Strategies

19

Experts create rich and
detailed mental models of
the design and requirements
(Adelson and Soloway, 1986;
Schumacher and Czerwinski, 1992)

Perform
mental simulations on
these models
(Gentner D, 1983)

Reasoning Strategies -
Generating scenarios,
Tradeoff analysis
(Tang et al., 2010)

What does the mental model of the
software design look like?

20

21

1. Knowledge
a. Domain knowledge
b. Design diagram knowledge

2. Diagram surface elements
3. Main goals
4. Control flow and data flow - dynamic

behaviours in the design
(Soloway and Ehrlich, 1984; Pennington, 1987;
Von Mayrhauser and Vans, 1996)

22

Anecdotal
Evidence from

Experts

Literature Review

Proposed Mental Model Elements for Design Diagrams

23

Literature Review

Teaching-
Learning of

Software
Design

Evaluation

Student
Difficulties

Expert
Practices and

Strategies

● Mental modeling (Adelson and
Soloway, 1986;)

● Mental simulation (Gentner D,
1983)

● Identifying and simulating
scenarios (Tang et al., 2010)

Evaluating a software design for its
semantic quality

● Is hard (Brechner, 2003)
● Has not been sufficiently explored

(Westphal, 2019)

Students have difficulties in
designing software systems
(Eckerdal et al., 2006; Loftus et al., 2011)

● Insufficient understanding of
domain and specifications
(Sien, 2011; Chren et al., 2019)

● Understanding relationships
between diagrams
(Burgueño et al.,2018)

Key Questions Answered in this Thesis

1. Existing gap in teaching-learning of software design evaluation
a. Literature Review

2. Student difficulties
a. Novice studies - Study 1a and 1b

RQ 1: How do students evaluate a design against the given requirements?

3. Pedagogical strategies for effective software design evaluation

24

Novice Study - Study 1a

25

RQ 1.1: How do students evaluate a software design

against the given requirements?

Student response

sheets

Data Source

Content analysis

Data Analysis

100 final year computer engineering and information technology engineering

students

Study 1a - Findings

26

Focus on dynamic behaviours and main

goals in the design

Identify scenarios which do

not satisfy requirements

Focus on diagram surface elements

elements in the design

Change data types,

functions of class diagram

Focus on new elements absent in the

design

Change existing

functionalities and

requirements

Add new functionality

Novice Study - Study 1b

27

Data Source Data Analysis

Audio transcripts of

the post-task interview

Video of students

performing the task

and screen capture

Student responses on

the task sheet

Thematic analysis of

transcripts

Thematic analysis of

video data

Student responses on

the task sheet

RQ 1.2: What defects are students able to identify in

the design evaluation task?

RQ 1.3: What reading strategies do students use?

RQ 1.4: What are the elements in their mental model?

Qualitative Study - 6 computer engineering and information technology engineering

students

More details

Study 1b - Findings

● Able to do a superficial search on the design diagrams

● Have difficulty in identifying scenarios where the design does not
satisfy the requirement.

● Difficulty in simulating the control flow and data flow within design
diagrams.

28

Novice studies - Connecting to the Mental Model Elements

29

Scaffolding students to
identify and model relevant scenarios
in the design can lead to effective
software design evaluation

30

Key Questions Answered in this Thesis

1. Existing gap in teaching-learning of software design evaluation
a. Literature Review

2. Student difficulties
Novice studies - Study 1a and 1b
RQ 1: How do students evaluate a design against the given requirements?

3. Pedagogical strategies for effective software design evaluation
a. VeriSIM pedagogy
b. Effectiveness Studies - Study 2 and 3
c. How pedagogical features of VeriSIM are contributing towards learning

31

VeriSIM Pedagogy

Verifying Designs by Simulating Scenarios

32

VeriSIM Pedagogy

Scenario branching - Identify scenariosDesign Tracing - Model scenarios

VeriSIM Pedagogy

33

VeriSIM Pedagogy

Scenario branching - Identify scenariosDesign Tracing - Model scenarios

Construct a state diagram which models the scenario
34

Scenario:

When the door is initially locked and the user selects the unlock option and enters the correct passcode,

the door unlocks”

VeriSIM Pedagogy: Design Tracing Strategy

VeriSIM Learning Environment

● VeriSIM Learning platform

● Web-based learning environment -
Developed using Vue.js, Node.js and MongoDB

Design Tracing Stage - 4 challenges:

1. Explore the model
2. Correct the model
3. Complete the model
4. Construct the model

More details about VeriSIM here 35

https://verisim.tech
https://prajishprasad.github.io/verisim.html

36

Model scenarios in the design using the design tracing

pedagogy.

Design Tracing Stage

Explore and Correct the

Model

Watch the demo here

https://docs.google.com/file/d/118nVHk4E2x03geiBv-8kV_NGC5BfwgkJ/preview
https://www.youtube.com/watch?v=LXCjsXytfdM

37

Design Tracing Stage- Challenge 3 - Complete the Model

Design Tracing Stage- Challenge 4 - Construct the Model

Connecting the Pedagogy to Mental Model Elements

38

VeriSIM Pedagogy: Scenario Branching Strategy

39

VeriSIM Pedagogy

Scenario branching - Identify scenariosDesign Tracing - Model scenarios

VeriSIM Pedagogy: Scenario Branching Strategy
Identify scenarios for each requirement in the design using a concept map

40

Requirement: A user with a valid account can register his/her ATM and set a PIN if he/she has not set
a PIN yet. The PIN should be of length 4 and should contain only numbers.

More details

Theoretical Basis: Model-based Learning

41(Buckley et al., 2010)

Theoretical Basis: Model-based Learning

42

Design Tracing - Model scenarios

https://docs.google.com/file/d/12UDBF8Y2FkUHhu_wC1v-JQAE6TCSpZK8/preview

Theoretical Basis: Model-based Learning

43

Scenario branching - Identify scenarios

Pedagogical Features: Model Progression

Progressively learn to construct the model
(Mulder et al. 2011)

1. Prior exploration of model
(Kopainsky et al., 2015)

2. Learning from erroneous models
(Wijnen et al., 2015)

3. Learning from partial models
(Mulder et al., 2016)

Challenge 1-3 help learners construct the
model for a given scenario

44

Pedagogical Features: Visualize Model Execution

45

Connecting the Pedagogy to Mental Model Elements

46

Key Questions Answered in this Thesis

1. Existing gap in teaching-learning of software design evaluation
a. Literature Review

2. Student difficulties
a. Novice studies - Study 1a and 1b

RQ 1: How do students evaluate a design against the given requirements?

3. Pedagogical strategies for effective software design evaluation
a. VeriSIM pedagogy
b. Effectiveness Studies - Study 2 and 3

RQ 2 and RQ 3: What are effects of the VeriSIM pedagogy in students’
ability to evaluate a design against the given requirements? 47

Refinement of the Pedagogy

48

VeriSIM 1.0 -
Design Tracing

Study 2

VeriSIM 2.0 -
Design Tracing + Scenario Branching

Study 3

DBR Cycle 1 DBR Cycle 2

Study 2

49

Data Analysis
RQ 2.1 Does VeriSIM improve

learners ability to

model a given scenario?

RQ 2.2 Does VeriSIM improve

learners ability to

uncover defects?

Differences in pre-test and

post-test question based on

rubric

Content analysis of “uncover

defects” question in the pre-test

and post-test

Data Source
Question in pre-test and

post-test: Explain the changes in

the system on execution of this

scenario

Question in pre-test and

post-test: Uncover defects in

design diagrams

More details

Study 2: Results - RQ 2.1: Ability to model scenarios

50

Pre-test

Mean (SD)

Post-test

Mean (SD)

Paired t-test

(p value)

Identifying relevant

data variables

0.47(0.70) 0.95(0.87) 0.00

Identifying relevant

events

1.16(0.62) 1.28(0.88) 0.17

Simulating state change 0.44(0.68) 0.84(0.84) 0.00

Total 2.07(1.70) 3.07(2.09) 0.00

Statistically significant

improvement in students’ ability

to model scenarios

Study 2: Results - RQ 2.2: Ability to uncover defects

51

No difference in ability to identify scenarios not satisfying the requirement

Students’ ability to model
scenarios improved
Students need explicit
help to identify scenarios

52

VeriSIM 1.0 -
Design Tracing

Study 2

VeriSIM 2.0 -
Design Tracing + Scenario Branching

Study 3

DBR Cycle 1 DBR Cycle 2

Study 3: Results - RQ 3.2: Identify defects

53More details

Students’ ability to model
scenarios improved
Students need explicit
help to identify scenarios

54

VeriSIM 1.0 -
Design Tracing

Study 2

VeriSIM 2.0 -
Design Tracing + Scenario Branching

Study 3

DBR Cycle 1 DBR Cycle 2

Students’ ability to identify
scenarios improved

Key Questions Answered in this Thesis

1. Existing gap in teaching-learning of software design evaluation
a. Literature Review

2. Student difficulties
a. Novice studies - Study 1a and 1b

3. Pedagogical strategies for effective software design evaluation
a. VeriSIM pedagogy
b. Effectiveness Studies - Study 2 and 3

RQ 2 and RQ 3: What are effects of the VeriSIM pedagogy in students’ ability to
evaluate a design against the given requirements?

c. Pedagogical features of VeriSIM
RQ 4: How are features in VeriSIM contributing towards student learning? 55

RQ 4: How are features in VeriSIM contributing towards
student learning?

● Key Features in VeriSIM:
○ Model progression of Challenges
○ Model execution visualization (Run)
○ Scenario branching

56

● Data Sources -
○ Interaction Logs - 48 students who gave consent (Study 2 and 3)
○ Focus group interviews

Model Progression of Challenges

57

Challenges in increasing order of difficulty.

● Challenge 1 - Explore the model
● Challenge 2 - Correct the model
● Challenge 3 - Complete the model
● Challenge 4 - Construct the model

Model Execution Visualization

58

Students use the model execution visualization feature while modelling scenarios

From interaction logs:

Model Execution Visualization

59

From focus group interviews

● Helped map a particular state to
the corresponding part of the
scenario

● Understand the relationship
between the scenario and
different diagrams

● Visual feedback helped learners
identify which parts had errors.

Scenario Branching Strategy

Focus group interview:

● Structuring and breaking down
the design problem

● Macro-view of the design
problem

● Identify scenarios missing in the
design diagrams

60

Summary and Contributions

61

62

Review of Literature

Experts create a rich mental model of the design, use

various reasoning techniques, and perform mental

simulations

Students have difficulties in developing a rich and

consistent mental model of the design

Novice studies - Study 1a and 1b

Have difficulty in identifying and simulating

scenarios where the design does not satisfy the

requirement.

Able to do a superficial search on the design diagrams

Difficulty in simulating the control flow and data

flow within design diagrams.

VeriSIM Pedagogy

Design Tracing - Model scenariosScenario branching - Identify scenarios

Evaluation studies - Study 2 and Study 3

● Students’ ability to model scenarios improved

● Students’ ability to identify defects improved

● Pedagogical features in VeriSIM contribute towards effective learning of design evaluation

Contributions
1. Unpacking learner difficulties while evaluating design diagrams

Quantitative and qualitative investigations on how students evaluate design
diagrams and difficulties which they face

2. Pedagogies for evaluating design diagrams -
The design tracing and scenario branching can be used by instructors in
software design courses

3. VeriSIM learning environment -
a. Directly used by instructors as well as students to be trained in evaluating design

diagrams against the requirements - https://verisim.tech
b. Design features of VeriSIM - used by learning environment designers in related

contexts. 63

https://verisim.tech

Implications
● Teaching-learning of Software Design

○ Equip students to identify specific scenarios and model them
○ Provide activities to help students progressively model scenarios in the

design

64

● Characterization of student mental models for design diagrams

● Model-based learning paradigm for computing disciplines

Generalizability
● Extension to other UML diagrams

○ Underlying principle of identifying and modelling scenarios can be
extended to other design diagrams

65

● Extension to teaching-learning of software design creation
○ While creating a design based on the given requirements, students can

identify and model various scenarios in their own designs

Limitations
● Learner characteristics

○ Personal, social, emotional and cognitive characteristics
○ Prior experience working with software designs

● Scoping the construct and skills involved in ‘evaluation’
○ Other perspectives - Syntactic and pragmatic deficiencies
○ Inter-personal and collaboration skills (Li, 2016)

66

Future Work

● Developing an instructor interface for the VeriSIM learning
environment

● Using eye-tracking for a deeper understanding of how students
evaluate a design

● Investigating the effects of evaluation before creation of designs

67

68

Acknowledgements

69

● Friends and Family
● EdTech department Family
● Bhupender Singh - Design and Development of VeriSIM
● Kinnari Gatare - UI/UX Design of VeriSIM
● Herold, Lakshmi - Initial design, planning of activities in TELE
● Colleagues from Fr. CRCE and SIES

Thesis-related Publications
Conference Papers

1. Prasad, P., & Iyer, S. (2020, August). How do Graduating Students Evaluate Software Design Diagrams?. In Proceedings of the 2020
ACM Conference on International Computing Education Research (pp. 282-290).

2. Prasad, P., & Iyer, S. (2020, June). VeriSIM: a learning environment for comprehending class and sequence diagrams using design
tracing. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering: Software Engineering Education and
Training (pp. 23-33).

Posters

1. Prasad, P., & Iyer, S. (2020, November). Inferring Students’ Tracing Behaviors from Interaction Logs of a Learning Environment for
Software Design Comprehension. In Koli Calling’20: Proceedings of the 20th Koli Calling International Conference on Computing
Education Research (pp. 1-2).

2. Reddy, D., Alse, K., Lakshmi, T.G., Prasad, P., & Iyer, S. (2021, March). Learning Environments for Fostering Disciplinary Practices in CS
Undergraduates. In SIGCSE 2021: To appear.

3. Prasad, P. (2018, August). Developing Students’ Cognitive Processes Required for Software Design Verification. In Proceedings of the
2018 ACM Conference on International Computing Education Research (pp.284-285). ACM.

70

Bibliography - I
Adelson, B., Soloway, E., 1986. A model of software design. International Journal of Intelligent Systems 1 (3), 195–213.

Bolloju, N., Leung, F. S., 2006. Assisting novice analysts in developing quality conceptual models with uml. Communications of the ACM 49 (7), 108–112.

Brechner, E., 2003. Things they would not teach me of in college: what microsoft developers learn later. In: Companion of the 18th annual ACM
SIGPLAN conference on Object-oriented programming, systems, languages, and applications. ACM, pp. 134–136

Buckley, B. C., Gobert, J. D., Horwitz, P., O’Dwyer, L. M., 2010. Looking inside the black box: assessing model-based learning and inquiry in biologica™.
International Journal of Learning Technology 5 (2), 166–190.

Burgueño, L., Vallecillo, A., Gogolla, M., 2018. Teaching uml and ocl models and their validation to software engineering students: an experience report.
Computer Science Education 28 (1), 23–41.

Chren, S., Buhnova, B., Macak, M., Daubner, L., Rossi, B., 2019. Mistakes in uml diagrams: analysis of student projects in a software engineering course.
In: Proceedings of the 41st International Conference on Software Engineering: Software Engineering Education and Training. IEEE Press, pp. 100–109.

Cohane, R., November 2017. Financial cost of software bugs. URL https://medium.com/@ryancohane/financial-cost-of-software-bugs-51b4d193f107

Eckerdal, A., McCartney, R., Moström, J. E., Ratcliffe, M., Zander, C., 2006. Can graduating students design software systems? ACM SIGCSE Bulletin 38
(1), 403–407.

Gentner, D., Gentner, D. R., 1983. Flowing waters or teeming crowds: Mental models of electricity. Mental models 99, 129.
71

https://medium.com/@ryancohane/financial-cost-of-software-bugs-51b4d193f107

Bibliography - II
Haskins, B., Jonette, S., Dick, B., Moroney, G., Lovell, R., Dabney, J., 2004. Error cost escalation through the project life cycle. In: Proceedings of the
14th Annual INCOSE International Symposium.

Kopainsky, B., Alessi, S. M., Pedercini, M., Davidsen, P. I., 2015. Effect of prior exploration as an instructional strategy for system dynamics. Simulation &
Gaming 46 (3-4), 293–321.

Kopainsky, B., Alessi, S. M., Pedercini, M., Davidsen, P. I., 2015. Effect of prior exploration as an instructional strategy for system dynamics. Simulation &
Gaming 46 (3-4), 293–321.

Li, P. L., 2016. What makes a great software engineer. Ph.D. thesis.

Lindland, O. I., Sindre, G., Solvberg, A., 1994. Understanding quality in conceptual modeling. IEEE software 11 (2), 42–49.

Loftus, C., Thomas, L., Zander, C., 2011. Can graduating students design: revisited. In: Proceedings of the 42nd ACM technical symposium on Computer
science education. ACM, pp. 105–110.

Mulder, Y. G., Lazonder, A. W., de Jong, T., 2011. Comparing two types of model progression in an inquiry learning environment with modelling facilities.
Learning and Instruction 21 (5), 614–624.

Mulder, Y. G., Bollen, L., de Jong, T., Lazonder, A. W., 2016. Scaffolding learning by modelling: The effects of partially worked-out models. Journal of
research in science teaching 53 (3), 502–523.

Newman, M., 2002. Software errors cost us economy 59.5 billion annually. NIST Assesses Technical Needs of Industry to Improve Software-Testing. 72

Bibliography - III
Pennington, N., 1987. Comprehension strategies in programming. In: Empirical studies of programmers: second workshop. Ablex Publishing Corp., pp.
100–113.

Plomp, T., 2013. Educational design research: An introduction. Educational design research, 11–50.

Schumacher, R. M., Czerwinski, M. P., 1992. Mental models and the acquisition of expert knowledge. In: The psychology of expertise. Springer, pp.
61–79.

Sien, V. Y., 2011. An investigation of difficulties experienced by students developing unified modelling language (uml) class and sequence diagrams.
Computer Science Education 21 (4), 317–342.

Soloway, E., Ehrlich, K., 1984. Empirical studies of programming knowledge. IEEE Transactions on software engineering (5), 595–609.

Tang, A., Aleti, A., Burge, J., van Vliet, H., 2010. What makes software design effective? Design Studies 31 (6), 614–640.

Von Mayrhauser, A., Vans, A. M., 1996. Identification of dynamic comprehension processes during large scale maintenance. IEEE Transactions on
Software Engineering 22 (6), 424–437.

Westphal, B., 2019. Teaching software modelling in an undergraduate introduction to software engineering. In: 2019 ACM/IEEE 22nd International
Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C). IEEE, pp. 690–699.

Wijnen, F. M., Mulder, Y. G., Alessi, S. M., Bollen, L., 2015. The potential of learning from erroneous models: comparing three types of model instruction.
System dynamics review 31 (4), 250–270. 73

Thank You

74

75

Extra Slides

76

Study 1b - Details

77

Study 1b: Characterizing Students’ Evaluation Process

78

Research

Questions

RQ 1.2: What defects are students able to identify in the

design evaluation task?

RQ 1.3: What reading strategies do students use?

RQ 1.4: What are the elements in their mental model?

Study 1b: Study Procedure

79

● 6 computer engineering and information technology engineering students (3

in third year, 3 in final year)

● Familiar with class and sequence diagrams - were introduced to UML

diagrams in the previous semester.

● Students - provided with requirements and design diagrams -

1 Class diagram, 3 sequence diagrams for a door locking system

● Task - For each requirement, your task is to provide a logical explanation for

how the design satisfies/does not satisfy the requirement. You are free to use

any notation/diagrams to support your explanation

Study 1b: Study Procedure

80

1

Participant
provided with task
sheet and design

diagrams

Task sheet contains
requirements

Design diagrams
provided in the

Umbrello interface

2

Researcher
explains task to

participant

Participant has to
check whether the

requirements are being
satisfied by the design

3

Participant
performs the task

Participant is free to
work silently or think

aloud. Researcher
takes observation

notes and is available
for answering any

queries

4

Post-task
Interview

Participants elaborate
and discuss how they
went about solving the

task

Study 1b: Data Sources and Analysis

81

Audio of the post-task

interview

Video of students

performing the task

and screen capture

Data Source
Student responses on

the task sheet

Thematic analysis of

audio data

Thematic analysis of

video data

Data Analysis
Student responses on

the task sheet

RQ 1.2: What defects are students able to identify in

the design evaluation task?

RQ 1.3: What reading strategies do students use?

RQ 1.4: What are the elements in their mental model?

Study 1b: Results

82

Able to identify defects which involve a superficial

search on the design diagrams

RQ 1.2: What defects are students able to

identify in the design evaluation task?

Single and multiple switches between

design diagrams and requirements

RQ 1.3: What reading strategies do students

use?

Focussed on surface level parts of the diagrams

Lacked deep exploration of the design - flow of

messages and how values change of variables

RQ 1.4: What are the elements in their mental

model?

Back to main slides

Study 2 - Details

83

Study 2: Effect of VeriSIM on Students’ Evaluation Skills:

84

Data Analysis
RQ 2.1 Does VeriSIM improve

learners ability to

model a given scenario?

RQ 2.2 Does VeriSIM improve

learners ability to

uncover defects?

Differences in pre-test and

post-test question based on

rubric

Content analysis of “uncover

defects” question in the pre-test

and post-test

Data Source
Question in pre-test and

post-test: Explain the changes in

the system on execution of this

scenario

Question in pre-test and

post-test: Uncover defects in

design diagrams

Study 2: Study Procedure

85

● 86 final year computer engineering and information technology engineering

students (48 male and 38 female)

● Familiar with class and sequence diagrams - had a software engineering course

in the previous semester

Study 2: Study Procedure

86

2

Pre-test

Design of ATM system:
● Class diagram
● 3 sequence

diagram
Questions:

● Execute the given
scenario

● Identify defects
based on the
requirement

1

Pre-registration

Basic information -
overall percentage in
last semester,
rate their confidence in
understanding of
object-oriented design,
class and sequence
diagrams

3

Interaction with
VeriSIM

4

Post-test

Design of library
system:

● Class diagram
● 3 sequence

diagram
Questions:

● Execute the given
scenario

● Identify defects
based on the
requirement

5

Focus group
interviews

Questions
● What are the main

things you learnt
from the workshop?

● What according to
you is design
tracing?

● What is the
usefulness of
constructing the
state diagram?

Study 2: Data Source and Analysis

87

Data Analysis
RQ 2.1 Does VeriSIM improve

learners ability to model a given

scenario?

RQ 2.2 Does VeriSIM improve

learners ability to uncover

defects?

Differences in pre-test and

post-test question based on

rubric

Content analysis of “uncover

defects” question in the pre-test

and post-test

Data Source
Question in pre-test and

post-test: Explain the changes in

the system on execution of this

scenario

Question in pre-test and

post-test: Uncover defects in

design diagrams

Study 2: Results - RQ 2.1: Model a given scenario: Rubric

88

Missing (0) Almost (1) Target (2)

Identifying relevant

data variables

Missing all relevant data

variables

from the class diagram

Identifies some relevant

variables

Adds irrelevant data

variables

Identifies all relevant

data variables

No irrelevant data

variables added

Identifying relevant

events

Missing all relevant events

Separation of events is not

seen

Identifies some relevant

events

Identifies some irrelevant

events

Separation of events is

unclear

Identifies all relevant

events

No irrelevant events

included

Separation of events is

clear

Simulating state

change

No mention of state change

of variables

State change of some

variables are mentioned

with variable-value pairs

State change of all

variables are clearly

mentioned with correct

variable-value pairs

Study 2: Results - RQ 2.1: Ability to model scenarios

89

Pre-test

Mean (SD)

Post-test

Mean (SD)

Paired t-test

(p value)

Identifying relevant

data variables

0.47(0.70) 0.95(0.87) 0.00

Identifying relevant

events

1.16(0.62) 1.28(0.88) 0.17

Simulating state change 0.44(0.68) 0.84(0.84) 0.00

Total 2.07(1.70) 3.07(2.09) 0.00

Statistically significant

improvement in students’ ability

to trace scenarios

Study 2: Results - RQ 2.2: Ability to uncover defects

90Total number of responses in Pre-test: 145
Total number of responses in Post-test: 71

Summary: Study 2: Reflection - Cycle 1

● There is a statistically significant improvement in students’ ability to
model scenarios

● Students perceive that design tracing is helping them
○ Develop an integrated understanding of design diagrams
○ Evaluate design diagrams better

91

● Spread VeriSIM over multiple days to avoid fatigue
● Design tracing <-> Evaluating design diagrams

Students need explicit help to generate and identify scenarios which
do not satisfy the requirements

Back to main slides

Scenario Branching Strategy

92

Scenario Branching Strategy

93

Steps:

● Identify subgoals in the
requirement

Requirement: A user with a valid account can register his/her ATM and set a PIN if he/she
has not set a PIN yet. The PIN should be of length 4 and should contain only numbers.

Subgoals:

● User with valid account
● Sets a PIN if a PIN hasn’t been

set yet
● PIN should be of length 4 and

should contain only numbers

94

Steps:

● Identify subgoals in the
requirement

● Identify relevant variables and
different possibilities of these
variables

Requirement: A user with a valid account can register his/her ATM and set a PIN if he/she
has not set a PIN yet. The PIN should be of length 4 and should contain only numbers.

User with valid account

Sets a PIN if a PIN hasn’t been set yet

Scenario Branching Strategy

Scenario Branching Strategy

95

Steps:

● Identify subgoals in the
requirement

● Identify relevant variables and
different possibilities of these
variables

● Identify relevant scenarios
based on the requirement

Requirement: A user with a valid account can register his/her ATM and set a PIN if he/she
has not set a PIN yet. The PIN should be of length 4 and should contain only numbers.

● Scenario 1: User with a valid account has already
set a Pin

● Scenario 2: User with a valid account has not set
a Pin and sets a valid Pin

● Scenario 3: User with a valid account has not set
a Pin and sets an invalid Pin

● Scenario 4: User has an invalid account

Scenario Branching Strategy

96

Steps:

● Identify subgoals in the
requirement

● Identify relevant variables and
different possibilities of these
variables

● Identify relevant scenarios based
on the requirement

● Identify scenarios which are not
satisfying the requirement

Requirement: A user with a valid account can register his/her ATM and set a PIN if he/she
has not set a PIN yet. The PIN should be of length 4 and should contain only numbers.

● Scenario 1: User with a valid account has already
set a Pin

● Scenario 2: User with a valid account has not set
a Pin and sets a valid Pin

● Scenario 3: User with a valid account has not
set a Pin and sets an invalid Pin

● Scenario 4: User has an invalid account

Implementation of Scenario Branching Strategy to VeriSIM

97

Worksheet

● Learners provided with requirements and design

diagrams

● Worksheet outlines how to construct the scenario tree

for a requirement

● Students are required to construct the scenario tree for

the remaining requirements.

CMAP Tool

● Nodes - contain values of the identified data variables

● Links - denote different possible scenarios for the

subgoals.

● Mentally trace each path and identify all possible

scenarios.

Back to main slides

Study 3 - Details

98

Study 3: Effects of VeriSIM 2.0 in Students’ Evaluation
Skills

99

● 18 second year computer engineering and information technology engineering

students

● Part of a Software design workshop

● Familiar with class and sequence diagrams - were introduced to UML

diagrams a few days prior.

Study 3: Study Procedure

100

2

VeriSIM - Module 1

Design Tracing
Pedagogy

1

Registration and
Pre-test

Design of ATM system:
● Class diagram
● 3 sequence

diagram
Questions:

● Identify
scenarios for
each requirement

● Identify defects
based on the
requirement

3

Focus group
interviews - 1

Questions
● What are the

main things you
learnt from the
workshop?

● What according
to you is design
tracing?

● What is the
usefulness of
constructing the
state diagram?

4

VeriSIM - Module 2

Scenario branching
pedagogy worksheet

5

Post-test and focus
group interviews - 2

Design of a streaming
website

● Class diagram
● 3 sequence

diagram
Questions:

● Identify scenarios
for each
requirement

● Identify defects
based on the
requirement

Study 3: Data Sources and Data Analysis

101

Content analysis of “uncover defects”

question in the pre-test and post-test

Content analysis of “identify scenarios”

question in the pre-test and post-test

RQ 3.1 Does VeriSIM improve learners ability to identify

scenarios in a given design?

RQ 3.2 Does VeriSIM improve learners ability to

uncover defects?

Study 3: Results - RQ 3.1: Identify Scenarios

102

Total number of responses in Pre-test: 81
Total number of responses in Post-test: 94

Study 3: Results - RQ 3.2: Identify Defects

103
Total number of responses in Pre-test: 45
Total number of responses in Post-test: 50

Back to main slides

104

